Deutsch English Français Italiano |
<itblzhkVG-xLR2yhwCcLNPiz1hs@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <itblzhkVG-xLR2yhwCcLNPiz1hs@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <44eaef1b-35be-4b50-900b-52b010ba9aa0@att.net> <_g9BcdiKQ1epFrcvM4FSF2rZkN8@jntp> <uvbeiq$2cvvd$1@dont-email.me> <lprzVpdRcfIy-L_JSquAz9BT8hI@jntp> <uvbh5k$2dir1$1@dont-email.me> <c-i86HjQFZQU4KksHNolidtBjOA@jntp> <uvbiab$2dq9a$1@dont-email.me> <ItTEuIS_QBKithVblps0EILoXDo@jntp> <uvbla3$2eghu$1@dont-email.me> Newsgroups: sci.math JNTP-HashClient: Yc5FEsYK3CSDOfI8fQKbs5yPmN0 JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=itblzhkVG-xLR2yhwCcLNPiz1hs@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Fri, 12 Apr 24 16:40:33 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="f7e66f75cf3581389676cbc447c438455dbbcf49"; logging-data="2024-04-12T16:40:33Z/8814791"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 3206 Lines: 48 Le 12/04/2024 à 17:51, Tom Bola a écrit : > WM schrieb: > >> Le 12/04/2024 à 17:00, Tom Bola a écrit : >>> WM schrieb: >>> >>>> Le 12/04/2024 à 16:40, Tom Bola a écrit : >>>>> WM schrieb: >>>>> >>>>>> Le 12/04/2024 à 15:56, Tom Bola a écrit : >>>>>>> WM schrieb: >>>>>> >>>>>>>> Consider the set {1, 2, 3, ..., ω} and multiply every element by 2 with >>>>>>>> the result {2, 4, 6, ..., ω*2}. What elements fall between ω and ω*2? >>>>>>> >>>>>>> {w+1, w+2, w+3, ...} >>>>>> >>>>>> No, all elements emergeing from doubling have larger distances than 1. >>>>>>> >>>>>>>> What size has the interval between N*2 and ω*2? >>>>>>> >>>>>>> N*2 is not a number, so there is no interval between it and w*2 >>>>>> >>>>>> N*2 is a set having elements but not including w*2. So there is a >>>>>> distance. >>>>> >>>>> This is wrong because there is a distance to any element of that set. >>>>> But you probably are meaning the distance between the set limit of IN which >>>>> is w and w*2 >>>> >>>> I am meaning the distance between N*2 and ω*2 after multiplication. >>> >>> Yes, that is the set after multiplication: >>> {0, 2, 4, 6, ..., w, w+1, w+2, w+3, ..., w*2} >> >> Why are the distances below ω 2 but beyond ω 1? > > This is the union of the image from IN under f(n)=2n and > the "elements fall between ω and ω*2" that you wanted above I wanted the image of 1, 2, 3, ..., ω under multiplication by 2. > > The image of IN under f(n)=2n and w is still {0, 2, 4, 6, ..., w*2} Yes, but where is ω in this sequence? Regards, WM