Deutsch   English   Français   Italiano  
<itblzhkVG-xLR2yhwCcLNPiz1hs@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!feeds.phibee-telecom.net!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <itblzhkVG-xLR2yhwCcLNPiz1hs@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: how
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <44eaef1b-35be-4b50-900b-52b010ba9aa0@att.net> <_g9BcdiKQ1epFrcvM4FSF2rZkN8@jntp>
 <uvbeiq$2cvvd$1@dont-email.me> <lprzVpdRcfIy-L_JSquAz9BT8hI@jntp> <uvbh5k$2dir1$1@dont-email.me>
 <c-i86HjQFZQU4KksHNolidtBjOA@jntp> <uvbiab$2dq9a$1@dont-email.me> <ItTEuIS_QBKithVblps0EILoXDo@jntp>
 <uvbla3$2eghu$1@dont-email.me>
Newsgroups: sci.math
JNTP-HashClient: Yc5FEsYK3CSDOfI8fQKbs5yPmN0
JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY
JNTP-Uri: http://news2.nemoweb.net/?DataID=itblzhkVG-xLR2yhwCcLNPiz1hs@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Fri, 12 Apr 24 16:40:33 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="f7e66f75cf3581389676cbc447c438455dbbcf49"; logging-data="2024-04-12T16:40:33Z/8814791"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 3206
Lines: 48

Le 12/04/2024 à 17:51, Tom Bola a écrit :
> WM schrieb:
> 
>> Le 12/04/2024 à 17:00, Tom Bola a écrit :
>>> WM schrieb:
>>> 
>>>> Le 12/04/2024 à 16:40, Tom Bola a écrit :
>>>>> WM schrieb:
>>>>> 
>>>>>> Le 12/04/2024 à 15:56, Tom Bola a écrit :
>>>>>>> WM schrieb:
>>>>>> 
>>>>>>>> Consider the set {1, 2, 3, ..., ω} and multiply every element by 2 with 
>>>>>>>> the result {2, 4, 6, ..., ω*2}. What elements fall between ω and ω*2? 
>>>>>>> 
>>>>>>> {w+1, w+2, w+3, ...} 
>>>>>> 
>>>>>> No, all elements emergeing from doubling have larger distances than 1.
>>>>>>> 
>>>>>>>> What size has the interval between N*2 and ω*2? 
>>>>>>> 
>>>>>>> N*2 is not a number, so there is no interval between it and w*2
>>>>>> 
>>>>>> N*2 is a set having elements but not including w*2. So there is a 
>>>>>> distance.
>>>>> 
>>>>> This is wrong because there is a distance to any element of that set. 
>>>>> But you probably are meaning the distance between the set limit of IN which 
>>>>> is w and w*2 
>>>> 
>>>> I am meaning the distance between N*2 and ω*2 after multiplication. 
>>> 
>>> Yes, that is the set after multiplication: 
>>> {0, 2, 4, 6, ..., w, w+1, w+2, w+3, ..., w*2} 
>> 
>> Why are the distances below ω 2 but beyond ω 1?
> 
> This is the union of the image from IN under f(n)=2n and 
> the "elements fall between ω and ω*2" that you wanted above

I wanted the image of 1, 2, 3, ..., ω under multiplication by 2.
> 
> The image of IN under f(n)=2n and w is still {0, 2, 4, 6, ..., w*2}

Yes, but where is ω in this sequence?

Regards, WM