Deutsch   English   Français   Italiano  
<ixudneobc-5RxGL4nZ2dnZfqnPudnZ2d@giganews.com>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.misty.com!weretis.net!feeder6.news.weretis.net!usenet.blueworldhosting.com!diablo1.usenet.blueworldhosting.com!feeder.usenetexpress.com!tr2.iad1.usenetexpress.com!69.80.99.26.MISMATCH!local-2.nntp.ord.giganews.com!news.giganews.com.POSTED!not-for-mail
NNTP-Posting-Date: Sat, 23 Mar 2024 22:38:04 +0000
Subject: Re: Vitruvian Man - parts 1-6
Newsgroups: soc.penpals
References: <20240323.220408.d6a7b0af@mixmin.net>
From: % <pursent100@gmail.com>
Date: Sat, 23 Mar 2024 15:38:03 -0700
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.18.1
MIME-Version: 1.0
In-Reply-To: <20240323.220408.d6a7b0af@mixmin.net>
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
X-Antivirus: AVG (VPS 240323-4, 2024-3-23), Outbound message
X-Antivirus-Status: Clean
Message-ID: <ixudneobc-5RxGL4nZ2dnZfqnPudnZ2d@giganews.com>
Lines: 229
X-Usenet-Provider: http://www.giganews.com
X-Trace: sv3-99d+9S1yeTPWi0vbWjEDMUFOm7VEwZL+uOZwETcD/DlYI7K771B+c3MfrB0IDkwRC2xFJydaqOyC9vP!cUKuQr0mYA80UA0UYkbaLsTf80xBnd0IMDf06vA51NgAK8hfroiXJ5OVBDs1UZEwE0AKVAEutJ6E
X-Complaints-To: abuse@giganews.com
X-DMCA-Notifications: http://www.giganews.com/info/dmca.html
X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers
X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly
X-Postfilter: 1.3.40
Bytes: 18187

D wrote:
> Wikimedia Commons - Da Vinci Vitruve (photo L. Viatour) 2,258 x 3,070 pixels, 5.81 MB:
>   https://upload.wikimedia.org/wikipedia/commons/2/22/Da_Vinci_Vitruve_Luc_Viatour.jpg
> 
>   crude photo correction:
>   http://rawtherapee.com/
>        rotate -0.62
>    horizontal +0.7
>      vertical +0.5
>          save PNG
>         (35.56 MB)
> 
>   import into inkscape:
>   https://inkscape.org/
>        skew +0.3h
>       width ~98.7
>      height 100.0
>        grid 20x20
>      square 16x16
> 
> "Vitruvius, the architect, says in his architectural work that the measurements
>   of man are in nature distributed in this manner, that is 4 fingers make a palm,
>   4 palms make a foot, 6 palms make a cubit, 4 cubits make a man, 4 cubits make
>   a footstep, 24 palms make a man and these measures are in his buildings. If you
>   open your legs enough that your head is lowered by 1/14 of your height and raise
>   your arms enough that your extended fingers touch the line of the top of your
>   head, let you know that the center of the ends of the open limbs will be the
>   navel, and the space between the legs will be an equilateral triangle"
> 
>   +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
>   |   |   |   |   |   |   |   |   |   |   -   |   |   |   |   |   |   |   |   |   |
>   +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
>   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
>   +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
>   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
>   +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
>   |   |   | |<------------------------100 deg-------------------------->| |   |   |
>   +---+---+-x-----------------------------------------------------------x-+---+---+
>   |   |   | \ |   |   |   |   |   |   |   |   |   |   |   |   |   |   | / |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   | \ |   |   |   |   |   |   |   |   |   |   |   |   | / |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   | \ |   |   |   |   |   |   |   |   |   |   | / |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   | \ |   |   |   |   |   |   |   |   | / |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   |   | \ |   |   |   |   |   |   | / |   |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   |   |   | \ |   |   |   |   | / |   |   |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---.---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   |   |   |   | \ |   |   | / |   |   |   |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+-------+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   |   |   |   |   | \ | / |   |   |   |   |   |   |   |   |   |
>   +---+---+---+---+---+---+---+---+---+---x---+---+---+---+---+---+---+---+---+---+
>   |   |   |   |   |   |   |   |   |   | / | \ |   |   |   |   |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   |   |   |   | / |   |   | \ |   |   |   |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   |   |   | / |   |   |   |   | \ |   |   |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   |   | / |   |   |   |   |   |   | \ |   |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   |   | / |   |   |   |   |   |   |   |   | \ |   |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   |   | / |   |   |   |   |   |   |   |   |   |   | \ |   |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   |   | / |   |   |   |   |   |   |   |   |   |   |   |   | \ |   |   |   |
>   +---+---|---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---|---+---+
>   |   |   | / |   |   |   |   |   |   |   |   |   |   |   |   |   |   | \ |   |   |
>   +---+---x---------------------------------------------------------------x---+---+
> 
>   * angle between extended middle finger tips tangent circle-square intersections
>     is actually 100 degrees; navel at center of circle is 1 1/2 times higher than
>     1/14 of man's height; angle between raised legs at calf muscle is actually 60
>     degrees as measured from the center of the square; also, angle between raised
>     legs at center of ball of foot is 60 degrees as measured from center of circle;
> 
>   * the line segment between center of circle and center of square is the opposite
>     side of a right triangle, with adjacent side the horizontal circle radius, and
>     hypotenuse from the center of the square to the end of that same circle radius,
>     the angle of which is 80 degrees; the center of square is 2 cubits above floor
>     line, and its base is tangent to the base of circle at the vertical centerline;
>     thus solving for "y": y/(y + 2) = tan 10; y = ~0.428148 cubits; 4 cubits/14 is
>     ~0.285714, for a ratio of ~1.49852; very nearly 1 1/2 times higher than "1/14";
> 
>   * circle radius 2 + y = ~2.428148 cubits; circle diameter 2y + 4 = ~4.856296 cu-
>     bits; circle area (2 + y)^2 * pi = ~18.522525 square cubits; top of circle is
>     2y = ~0.856296 cubits above square, segment chord 4 * sqrt(2y) = ~3.701451 cu-
>     bits, central angle is 2 * arctan (2 * sqrt(2y)/(2 - y)) = ~99.316396 degrees
>     (inside edge extended middle finger tips); 1 finger is 1/24 cubit = ~0.041667
>     cubits; 1 palm is 1/6 cubit = ~0.166667 cubits; 1 foot 4/6 = ~0.666667 cubits;
> 
>   * simplifying the value of "y", y/(y+2)=tan(10): y = 2sin(10)/(cos(10)-sin(10));
>     circle chord at top of square = 8sqrt(sin(10)/(cos(10)-sin(10))) = ~3.701451;
>     2arcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2-sin(10)))
>     is central angle of top circle sector ~99.316396 degrees; top circle sector
>     area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan((cos(10)-sin(10))sqrt(sin(10)
>     /(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/180 = ~5.109973 square cubits; top
>     circle segment area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan((cos(10)-sin
>     (10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/180+(8sin(10)/(cos
>     (10)-sin(10))-8)sqrt(sin(10)/(cos(10)-sin(10))) = ~2.200907 square cubits;
> 
>   * circle chord at side of square = 2sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4) =
>     ~2.753836; central angle of side circle sector = 2arcTan(sqrt((2sin(10)/(cos
>     (10)-sin(10))+2)^2-4)/2) = ~69.091629 degrees; side circle sector area = pi
>     (2sin(10)/(cos(10)-sin(10))+2)^2arcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2
>     -4)/2)/180 = ~3.554865 square cubits; area of side circle segment = pi(2sin
>     (10)/(cos(10)-sin(10))+2)^2arcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)/
>     2)/180-2sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4) = ~0.801029 square cubits;
> 
>   * circle chord at bottom of square = 4 cubits; central angle of bottom circle
>     sector = 2arcTan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)) = ~110.908371
>     degrees; bottom circle sector area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arc
>     Tan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/180 = ~5.706397 square cu-
>     bits; bottom circle segment area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan
>     (2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/180-2sqrt((2sin(10)/(cos(10)-
>     sin(10))+2)^2-4) = ~2.952562 square cubits;
> 
>   * area of bottom square corner outside circle = -pi(2sin(10)/(cos(10)-sin(10))
>     +2)^2arcTan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/360-sqrt((2sin(10)/
>     (cos(10)-sin(10))+2)^2-4)+4sin(10)/(cos(10)-sin(10))+4 = ~0.626179 square
>     cubits; circle chord at top corner of square = sqrt((-sqrt((2sin(10)/(cos
>     (10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^2+(-4sqrt(sin(10)/(cos
>     (10)-sin(10)))+2)^2) = ~0.245524 cubits; central angle of top square corner
>     circle sector = -arcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)/2)-arcTan
>     ((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2-sin(10)))+90
>     = ~5.795988 degrees; top square corner circle sector area = (2sin(10)/(cos
>     (10)-sin(10))+2)^2(-piarcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)/2)/
>     360-piarcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2-
>     sin(10)))/360+pi/4) = ~0.298212 square cubits; top square corner circle
>     segment area = -sqrt(((-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)
>     /(cos(10)-sin(10))+2)^2+(-4sqrt(sin(10)/(cos(10)-sin(10)))+2)^2)(-(-sqrt
>     ((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^2/4-
>     (-4sqrt(sin(10)/(cos(10)-sin(10)))+2)^2/4+(2sin(10)/(cos(10)-sin(10))+2)
>     ^2))/2+(2sin(10)/(cos(10)-sin(10))+2)^2(-piarcTan(sqrt((2sin(10)/(cos(10)
>     -sin(10))+2)^2-4)/2)/360-piarcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-
>     sin(10)))/(cos(10)/2-sin(10)))/360+pi/4) = ~0.000508 square cubits; area
>     of top square corner outside circle = sqrt(((-sqrt((2sin(10)/(cos(10)-sin
>     (10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^2+(-4sqrt(sin(10)/(cos(10)-sin
>     (10)))+2)^2)(-(-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)
>     -sin(10))+2)^2/4-(-4sqrt(sin(10)/(cos(10)-sin(10)))+2)^2/4+(2sin(10)/(cos
>     (10)-sin(10))+2)^2))/2+(2sin(10)/(cos(10)-sin(10))+2)^2(piarcTan(sqrt((2sin
>     (10)/(cos(10)-sin(10))+2)^2-4)/2)/360+piarcTan((cos(10)-sin(10))sqrt(sin(10)
>     /(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/360-pi/4)+(-2sqrt(sin(10)/(cos(10)
>     -sin(10)))+1)(-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)-
>     sin(10))+2) = ~0.014041 (= 0.0140410224358...) square cubits;
> 
>   * line segment "y" is also the shortest side of a scalene triangle, with longest
>     side the circle radius, and adjacent side "a" 100 degrees from vertical center-
>     line to the end of that same circle radius; thus solving for "a": a = sqrt((-8
>     sin(10)cos(10)cos(70)+4(sin(10))^2)/(-2sin(10)cos(10)+1)+(2sin(10)/(cos(10)-sin
>     (10))+2)^2) = ~2.316912 cubits (2.31691186136...); area of triangle = sin(10)cos
>     (10)cos(20)/(-sin(10)cos(10)+1/2) = ~0.488455 (0.488455385956...) square cubits;
> 
>   * segment "y" is shortest side of yet another, slightly smaller scalene triangle
>     with adjacent side "a" 110 degrees from vertical centerline, and longest side
>     60 degrees from the same vertical centerline; thus solving for "a": a = sqrt(3)/
>     (cos(10)-sin(10)) = ~2.135278 (2.13527752148...) cubits; longest side = 2sin(70)
>     /(cos(10)-sin(10)) = ~2.316912 (2.31691186136...) cubits, which extends 2sin(70)
>     /(cos(10)-sin(10))-4sqrt(3)/3 = ~0.00751078 cubits beyond intersection w/square;
>     area of triangle = sqrt(3)sin(10)sin(70)/(cos(10)-sin(10))^2 = ~0.429540 square
>     cubits (0.429540457576...); the tiny fraction of this triangle outside square is
>     described by shortest side = sin(10)(2/(cos(10)-sin(10))-4sqrt(3)/(3sin(70))) =
>     ~0.00138794 cubits (0.00138793689527...); longest side = 2sin(70)/(cos(10)-sin
>     (10))-4sqrt(3)/3 = ~0.00751078 (0.00751078459977...) cubits; adjacent side "a":
>     a = sqrt(3)(1/(cos(10)-sin(10))-2sqrt(3)/(3sin(70))) = ~0.00692198 cubits (0.00
>     692197652921...); area of tiny triangle = (sqrt(3)sin(10)(csc(70))^2(sqrt(3)sin
>     (10)/3-sqrt(3)cos(10)/3+sin(70)/2)(5sqrt(3)sin(10)sin(70)/6-4sqrt(3)sin(70)cos
>     (10)/3+sin(10)cos(10)+2(sin(70))^2-(sin(10))^2)+(sin(10))^2(csc(70))^2(-sqrt(3)
>     (cos(10)-sin(10))+3sin(70)/2)(-sqrt(3)(cos(10)-sin(10))/3+sin(70)/2))/(cos(10)-
>     sin(10))^2 = ~0.00000451394 square cubits (0.0000045139387711...);
> 
>   * segment "y" is the base of an isosceles triangle with vertex angle 160 degrees,
>     leg 2(sin(10))^2/(sin(20)(cos(10)-sin(10))) = ~0.217376439936 cubits, altitude
>     (sin(10))^2/(cos(10)(cos(10)-sin(10))) = ~0.0377470226626 cubits, and area tan
========== REMAINDER OF ARTICLE TRUNCATED ==========