Deutsch   English   Français   Italiano  
<k8ycnepSIp40ZVz6nZ2dnZfqn_idnZ2d@giganews.com>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!border-3.nntp.ord.giganews.com!border-2.nntp.ord.giganews.com!nntp.giganews.com!Xl.tags.giganews.com!local-4.nntp.ord.giganews.com!news.giganews.com.POSTED!not-for-mail
NNTP-Posting-Date: Fri, 28 Feb 2025 17:55:53 +0000
Subject: Re: New equation
Newsgroups: sci.math
References: <CJRYb90R4pKx6LHEBcCdcCA4y30@jntp>
 <d2lprjtieerl4rjrqs9s878j0d03jm645q@4ax.com>
 <MimQ6gJUHMh7Qd3O8h9HuwqFhUg@jntp>
 <15vqrj5iscra2hlaiukp60qo0mkiquvai8@4ax.com>
 <esk4yUvD7xtbFRMwGfaB_cgVGwg@jntp> <vpld4o$26f02$1@dont-email.me>
 <ZuBkOZlN3Tt29PxIPLwN6BSCDt0@jntp> <vpli8o$27a25$2@dont-email.me>
 <paGqSVDKFAulO0cdlEqGbkSJSws@jntp> <vplobr$28etg$1@dont-email.me>
 <_Obp8c7UY5bGF28tIGHuSkSSSTo@jntp> <vplu46$294n9$1@dont-email.me>
 <vpm321$29pat$1@dont-email.me>
 <p6OcnTFAkOVreiL6nZ2dnZfqnPqdnZ2d@giganews.com>
 <vppc9h$32bv9$1@dont-email.me>
 <isScnTCzp8133Vz6nZ2dnZfqn_qdnZ2d@giganews.com>
 <fce8aaae-4ac3-4909-99df-60491fc4de7e@att.net>
From: Ross Finlayson <ross.a.finlayson@gmail.com>
Date: Fri, 28 Feb 2025 09:55:52 -0800
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101
 Thunderbird/38.6.0
MIME-Version: 1.0
In-Reply-To: <fce8aaae-4ac3-4909-99df-60491fc4de7e@att.net>
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit
Message-ID: <k8ycnepSIp40ZVz6nZ2dnZfqn_idnZ2d@giganews.com>
Lines: 91
X-Usenet-Provider: http://www.giganews.com
X-Trace: sv3-oMUVt5W1MRCO42VdN0a/FiIVgLsrsCz/rpmxG5+ShI8ozTzeYTrxUstcyO9qiwMsemW0m6hTfOufBAz!PZxQYOHz+Gzhvu4QinhIHXz+7NoV+nu/gHEVQfK4ARH1CkKXYNTsMs0jbQqW5j2NgBpMmbG4sOU=
X-Complaints-To: abuse@giganews.com
X-DMCA-Notifications: http://www.giganews.com/info/dmca.html
X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers
X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly
X-Postfilter: 1.3.40

On 02/28/2025 05:50 AM, Jim Burns wrote:
> On 2/27/2025 11:51 PM, Ross Finlayson wrote:
>> On 02/27/2025 01:46 AM, efji wrote:
>>> Le 27/02/2025 à 05:19, Ross Finlayson a écrit :
>
>>>> Division in complex numbers is opinionated,
>>>> not unique.
>
>>> :)
>>> Hachel has a brother !
>
>>> A BS-philosophical version of Hachel.
>>> Let's park them together.
>>
>> Division in complex numbers most surely is
>> non-unique, [...]
>
> In the complex field,
> division is unique, except by 0,
> and division by 0 isn't at all.
> Because the complex field is a field.
>
> A field has operations '+' '⋅' such that
> both are associative and commutative,
> have identities 0 1 and inverses -x x⁻¹,
> except 0⁻¹, and '⋅' distributes over '+'
>
> Consider inverse(s?) x⁻¹ x⁻¹′
> x⁻¹⋅x⋅x⁻¹′ = x⁻¹⋅x⋅x⁻¹′
> x⁻¹⋅1 = 1⋅x⁻¹′
> x⁻¹ = x⁻¹′
>
> The complex field is a field,
> in part, because 𝑖² = -1
> from which it must follow that,
> for (a+b𝑖)⁻¹ = x+y𝑖 such that
>   (a+b𝑖)⋅(x+y𝑖) = 1
> ⎛
> ⎜ (a+b𝑖)⋅(x+y𝑖) = (ax-by)+(bx+ay)𝑖 = 1
> ⎜
> ⎜ ax-by = 1
> ⎜ bx+ay = 0
> ⎜
> ⎜ a²x-aby = a
> ⎜ b²x+aby = 0
> ⎜ (a²+b²)x = a
> ⎜ x = a/(a²+b²)
> ⎜
> ⎜ abx-b²y = b
> ⎜ abx+a²y = 0
> ⎜ (a²+b²)y = -b
> ⎜ y = -b/(a²+b²)
> ⎜
> ⎜ x+y𝑖 = (a-b𝑖)/(a²+b²)
> ⎜
> ⎜ (a+b𝑖)⁻¹ = (a-b𝑖)/(a²+b²)
> ⎝ uniquely, for a²+b² ≠ 0
>
> It's possible that
> you are confusing division with
> logarithm or square root or some such.
>
>> Furthermore, if you don't know usual derivations
>> of Fourier-style analysis and for example about
>> that the small-angle approximation is a linearisation
>> and is an approximation and is after a numerical method,
>> you do _not_ know.
>>
>> Then about integral analysis and this sort of
>> "original analysis" and about the identity line
>> being the envelope of these very usual integral
>> equations, it certainly is so.
>
> Technobabble.
> And not in a good way.
>
>> [...]
>
>

https://www.youtube.com/watch?v=Uv_6g__03_E&list=PLb7rLSBiE7F5_h5sSsWDQmbNGsmm97Fy5&index=33

How about the "yin-yang ad-infinitum" bit
that shows directly a failure of inductive inference,
courtesy a simplest fact of geometry, and graphically.

Remember that?

Not.ultimately.untrue, say.