| Deutsch English Français Italiano |
|
<k8ycnepSIp40ZVz6nZ2dnZfqn_idnZ2d@giganews.com> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!border-3.nntp.ord.giganews.com!border-2.nntp.ord.giganews.com!nntp.giganews.com!Xl.tags.giganews.com!local-4.nntp.ord.giganews.com!news.giganews.com.POSTED!not-for-mail NNTP-Posting-Date: Fri, 28 Feb 2025 17:55:53 +0000 Subject: Re: New equation Newsgroups: sci.math References: <CJRYb90R4pKx6LHEBcCdcCA4y30@jntp> <d2lprjtieerl4rjrqs9s878j0d03jm645q@4ax.com> <MimQ6gJUHMh7Qd3O8h9HuwqFhUg@jntp> <15vqrj5iscra2hlaiukp60qo0mkiquvai8@4ax.com> <esk4yUvD7xtbFRMwGfaB_cgVGwg@jntp> <vpld4o$26f02$1@dont-email.me> <ZuBkOZlN3Tt29PxIPLwN6BSCDt0@jntp> <vpli8o$27a25$2@dont-email.me> <paGqSVDKFAulO0cdlEqGbkSJSws@jntp> <vplobr$28etg$1@dont-email.me> <_Obp8c7UY5bGF28tIGHuSkSSSTo@jntp> <vplu46$294n9$1@dont-email.me> <vpm321$29pat$1@dont-email.me> <p6OcnTFAkOVreiL6nZ2dnZfqnPqdnZ2d@giganews.com> <vppc9h$32bv9$1@dont-email.me> <isScnTCzp8133Vz6nZ2dnZfqn_qdnZ2d@giganews.com> <fce8aaae-4ac3-4909-99df-60491fc4de7e@att.net> From: Ross Finlayson <ross.a.finlayson@gmail.com> Date: Fri, 28 Feb 2025 09:55:52 -0800 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.6.0 MIME-Version: 1.0 In-Reply-To: <fce8aaae-4ac3-4909-99df-60491fc4de7e@att.net> Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Message-ID: <k8ycnepSIp40ZVz6nZ2dnZfqn_idnZ2d@giganews.com> Lines: 91 X-Usenet-Provider: http://www.giganews.com X-Trace: sv3-oMUVt5W1MRCO42VdN0a/FiIVgLsrsCz/rpmxG5+ShI8ozTzeYTrxUstcyO9qiwMsemW0m6hTfOufBAz!PZxQYOHz+Gzhvu4QinhIHXz+7NoV+nu/gHEVQfK4ARH1CkKXYNTsMs0jbQqW5j2NgBpMmbG4sOU= X-Complaints-To: abuse@giganews.com X-DMCA-Notifications: http://www.giganews.com/info/dmca.html X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly X-Postfilter: 1.3.40 On 02/28/2025 05:50 AM, Jim Burns wrote: > On 2/27/2025 11:51 PM, Ross Finlayson wrote: >> On 02/27/2025 01:46 AM, efji wrote: >>> Le 27/02/2025 à 05:19, Ross Finlayson a écrit : > >>>> Division in complex numbers is opinionated, >>>> not unique. > >>> :) >>> Hachel has a brother ! > >>> A BS-philosophical version of Hachel. >>> Let's park them together. >> >> Division in complex numbers most surely is >> non-unique, [...] > > In the complex field, > division is unique, except by 0, > and division by 0 isn't at all. > Because the complex field is a field. > > A field has operations '+' '⋅' such that > both are associative and commutative, > have identities 0 1 and inverses -x x⁻¹, > except 0⁻¹, and '⋅' distributes over '+' > > Consider inverse(s?) x⁻¹ x⁻¹′ > x⁻¹⋅x⋅x⁻¹′ = x⁻¹⋅x⋅x⁻¹′ > x⁻¹⋅1 = 1⋅x⁻¹′ > x⁻¹ = x⁻¹′ > > The complex field is a field, > in part, because 𝑖² = -1 > from which it must follow that, > for (a+b𝑖)⁻¹ = x+y𝑖 such that > (a+b𝑖)⋅(x+y𝑖) = 1 > ⎛ > ⎜ (a+b𝑖)⋅(x+y𝑖) = (ax-by)+(bx+ay)𝑖 = 1 > ⎜ > ⎜ ax-by = 1 > ⎜ bx+ay = 0 > ⎜ > ⎜ a²x-aby = a > ⎜ b²x+aby = 0 > ⎜ (a²+b²)x = a > ⎜ x = a/(a²+b²) > ⎜ > ⎜ abx-b²y = b > ⎜ abx+a²y = 0 > ⎜ (a²+b²)y = -b > ⎜ y = -b/(a²+b²) > ⎜ > ⎜ x+y𝑖 = (a-b𝑖)/(a²+b²) > ⎜ > ⎜ (a+b𝑖)⁻¹ = (a-b𝑖)/(a²+b²) > ⎝ uniquely, for a²+b² ≠ 0 > > It's possible that > you are confusing division with > logarithm or square root or some such. > >> Furthermore, if you don't know usual derivations >> of Fourier-style analysis and for example about >> that the small-angle approximation is a linearisation >> and is an approximation and is after a numerical method, >> you do _not_ know. >> >> Then about integral analysis and this sort of >> "original analysis" and about the identity line >> being the envelope of these very usual integral >> equations, it certainly is so. > > Technobabble. > And not in a good way. > >> [...] > > https://www.youtube.com/watch?v=Uv_6g__03_E&list=PLb7rLSBiE7F5_h5sSsWDQmbNGsmm97Fy5&index=33 How about the "yin-yang ad-infinitum" bit that shows directly a failure of inductive inference, courtesy a simplest fact of geometry, and graphically. Remember that? Not.ultimately.untrue, say.