Deutsch English Français Italiano |
<mailman.121.1740748239.2912.python-list@python.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.nobody.at!news.swapon.de!fu-berlin.de!uni-berlin.de!not-for-mail From: "info@physalia-courses.org" <info@physalia-courses.org> Newsgroups: comp.lang.python Subject: =?utf-8?Q?Machine_Learning_Methods_for_Longitudinal_Data_with_Python_?= =?utf-8?Q?=E2=80=93_Online_Course_=286-9_May=29?= Date: Fri, 28 Feb 2025 12:56:27 +0100 (CET) Lines: 23 Message-ID: <mailman.121.1740748239.2912.python-list@python.org> References: <1740743787.06433745@webmail.jimdo.com> Mime-Version: 1.0 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Trace: news.uni-berlin.de +eEov0KibTLlu/vCavIs0AJh6m7EuC2OqHsTd6qeaNAQ== Cancel-Lock: sha1:7XtYHCZ+5YV5bnUOKx1YVdmMKJc= sha256:xnFMnHu4z8BEdhg1I2HlYds9pqADSJBAj9gBOti6k58= Return-Path: <info@physalia-courses.org> X-Original-To: python-list@python.org Delivered-To: python-list@mail.python.org Authentication-Results: mail.python.org; dkim=none reason="no signature"; dkim-adsp=none (unprotected policy); dkim-atps=neutral X-Spam-Status: OK 0.039 X-Spam-Evidence: '*H*': 0.93; '*S*': 0.01; 'hands-on': 0.05; 'real- world': 0.07; 'approaches': 0.09; 'exercises,': 0.09; 'graph': 0.09; 'may.': 0.09; 'predictive': 0.09; 'subject:Machine': 0.09; 'url:social': 0.09; 'subject:Python': 0.12; 'received:173': 0.13; '6-9': 0.16; 'bayesian': 0.16; 'combines': 0.16; 'forecasting': 0.16; 'received:173.203': 0.16; 'received:173.203.187': 0.16; 'received:iad3a.emailsrvr.com': 0.16; 'resolution:': 0.16; 'subject:Learning': 0.16; 'time-series': 0.16; 'url- ip:3.255.48.233/32': 0.16; 'url-ip:3.255.48/24': 0.16; 'url- ip:3.255/16': 0.16; 'url-ip:52.215.95.29/32': 0.16; 'url- ip:52.215.95/24': 0.16; 'url-ip:52.215/16': 0.16; 'url- ip:54.194.127.198/32': 0.16; 'url-ip:54.194.127/24': 0.16; 'url- ip:54.194/16': 0.16; 'applications': 0.17; 'to:addr:python-list': 0.20; 'all,': 0.20; 'machine': 0.22; 'register': 0.25; 'cover': 0.26; 'studies': 0.26; 'subject:for': 0.32; 'there': 0.33; 'handling': 0.35; 'mobile:': 0.35; 'networks': 0.35; 'applying': 0.36; 'both': 0.38; 'methods': 0.39; 'still': 0.40; 'data.': 0.40; 'statistical': 0.40; 'learn': 0.40; 'best': 0.61; 'introduction': 0.61; 'dear': 0.62; 'gain': 0.62; 'techniques': 0.62; 'online': 0.63; 'linkedin': 0.64; 'more,': 0.67; 'header:Received:6': 0.67; 'sequence': 0.69; 'subject:Data': 0.71; 'url-ip:18/8': 0.72; 'bias': 0.76; 'subjectcharset:utf-8': 0.80; 'email name:info': 0.80; 'left': 0.83; 'practical': 0.84; 'biases': 0.84; 'carlo': 0.84; 'crucial': 0.84; 'received:(smtp server)': 0.84; 'subject: \xe2\x80\x93 ': 0.84; 'subject:May': 0.84; 'subject:Online': 0.84; 'subject:\xe2\x80\x93': 0.84; 'url:app': 0.86; 'biological': 0.91; 'include:': 0.91; 'url-ip:18.221/16': 0.91; 'from:addr:info': 0.97 X-Auth-ID: info@physalia-courses.org Importance: Normal X-Priority: 3 (Normal) X-Type: html X-Client-IP: 95.91.242.236 X-Mailer: webmail/19.0.28-RC X-Classification-ID: b04fbd3e-5bb6-4227-9ddb-687206f7ac83-1-2 X-Content-Filtered-By: Mailman/MimeDel 2.1.39 X-BeenThere: python-list@python.org X-Mailman-Version: 2.1.39 Precedence: list List-Id: General discussion list for the Python programming language <python-list.python.org> List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>, <mailto:python-list-request@python.org?subject=unsubscribe> List-Archive: <https://mail.python.org/pipermail/python-list/> List-Post: <mailto:python-list@python.org> List-Help: <mailto:python-list-request@python.org?subject=help> List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>, <mailto:python-list-request@python.org?subject=subscribe> X-Mailman-Original-Message-ID: <1740743787.06433745@webmail.jimdo.com> Bytes: 5580 =0ADear all,=0AThere are still 5 seats left for the upcoming Physalia cours= e "Machine Learning Methods for Longitudinal Data with Python," which is ta= king place online from 6-9 May. This course will provide a comprehensive in= troduction to analyzing sequence data (repeated over time or space) when ti= me and causation play a crucial role.=0A =0AThis course will cover both cla= ssical statistical and modern machine learning approaches to handling time-= dependent data. Participants will learn how to recognize and address tempor= al dependencies, disentangle cause-effect relationships, and apply appropri= ate modeling techniques for forecasting, survival analysis, and multi-omics= data integration. Topics will include:=0AStatistical and machine learning = methods for sequence data=0ABias resolution: confounding, colliding, and me= diator biases=0ATime-series forecasting and predictive modeling=0ABayesian = networks and graph models=0AApplications in epidemiology, gene expression, = and multi-omics=0AThe course combines lectures, hands-on exercises, and cas= e studies to ensure participants gain practical skills for applying these m= ethods to real-world biological data.=0A =0A =0ATo register or learn more, = please visit [ https://www.physalia-courses.org/courses-workshops/longitudi= nal-data/ ]( https://www.physalia-courses.org/courses-workshops/longitudina= l-data/ )=0A =0ABest regards,=0ACarlo=0A =0A =0A =0A=0A--------------------= =0A=0ACarlo Pecoraro, Ph.D=0A=0A=0APhysalia-courses DIRECTOR=0A=0Ainfo@phys= alia-courses.org=0A=0Amobile: +49 17645230846=0A=0A[ Bluesky ]( https://bsk= y.app/profile/physaliacourses.bsky.social ) [ Linkedin ]( https://www.linke= din.com/in/physalia-courses-a64418127/ )=0A=0A=0A