Deutsch English Français Italiano |
<mailman.143.1743088611.2912.python-list@python.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!fu-berlin.de!uni-berlin.de!not-for-mail From: "info@physalia-courses.org" <info@physalia-courses.org> Newsgroups: comp.lang.python Subject: Online course: Introduction to Deep Learning in Python Date: Thu, 27 Mar 2025 14:59:42 +0100 (CET) Lines: 18 Message-ID: <mailman.143.1743088611.2912.python-list@python.org> References: <1743083982.746418398@webmail.jimdo.com> Mime-Version: 1.0 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable X-Trace: news.uni-berlin.de bAIvC+3HC7LdxOzRl7XqtAenTAKEOAhDqq1dCuB78S9g== Cancel-Lock: sha1:ovIQ6kbk1YrznXy5QFSaMemoGQw= sha256:NHYQvQstsLId9J4gfmpUZFE3K510a+nH5RqaBb6V328= Return-Path: <info@physalia-courses.org> X-Original-To: python-list@python.org Delivered-To: python-list@mail.python.org Authentication-Results: mail.python.org; dkim=none reason="no signature"; dkim-adsp=none (unprotected policy); dkim-atps=neutral X-Spam-Status: OK 0.037 X-Spam-Evidence: '*H*': 0.93; '*S*': 0.00; 'hands-on': 0.05; 'linux': 0.09; 'segmentation': 0.09; 'url:social': 0.09; 'subject:Python': 0.12; 'received:173': 0.13; '(cnns)': 0.16; '2025': 0.16; 'evaluating': 0.16; 'jupyter': 0.16; 'neural': 0.16; 'notebooks,': 0.16; 'received:173.203': 0.16; 'received:173.203.187': 0.16; 'received:iad3a.emailsrvr.com': 0.16; 'regression,': 0.16; 'researchers,': 0.16; 'subject:Learning': 0.16; 'url- ip:3.255.48.233/32': 0.16; 'url-ip:3.255.48/24': 0.16; 'url- ip:3.255/16': 0.16; 'url-ip:52.215.95.29/32': 0.16; 'url- ip:52.215.95/24': 0.16; 'url-ip:52.215/16': 0.16; 'url- ip:54.194.127.198/32': 0.16; 'url-ip:54.194.127/24': 0.16; 'url- ip:54.194/16': 0.16; 'applications': 0.17; 'invite': 0.19; 'to:addr:python-list': 0.20; 'all,': 0.20; 'python,': 0.25; 'programming': 0.25; 'practices': 0.26; 'deep': 0.31; 'fundamentals': 0.32; 'research.': 0.32; 'but': 0.32; 'mobile:': 0.35; 'networks': 0.35; 'image': 0.36; 'work.': 0.37; 'using': 0.37; 'url-ip:104.18.41.41/32': 0.39; 'url-ip:104.18.41/24': 0.39; 'url-ip:172.64.146.215/32': 0.39; 'url-ip:172.64.146/24': 0.39; 'website:': 0.60; 'best': 0.61; 'introduction': 0.61; 'dear': 0.62; 'our': 0.63; 'online': 0.63; 'linkedin': 0.64; 'experience': 0.64; 'pleased': 0.67; 'interested': 0.68; 'integrating': 0.69; 'performance': 0.71; 'url-ip:18/8': 0.72; 'email name:info': 0.80; 'practical': 0.84; 'carlo': 0.84; 'dates:': 0.84; 'received:(smtp server)': 0.84; 'subject:Online': 0.84; 'url:app': 0.86; 'avoiding': 0.91; 'biological': 0.91; 'subject:Introduction': 0.91; 'format:': 0.93; 'from:addr:info': 0.97 X-Auth-ID: info@physalia-courses.org Importance: Normal X-Priority: 3 (Normal) X-Type: html X-Client-IP: 95.91.209.149 X-Mailer: webmail/19.0.28-RC X-Classification-ID: 17c02172-1a18-4270-9062-757422e496fd-1-1 X-Content-Filtered-By: Mailman/MimeDel 2.1.39 X-BeenThere: python-list@python.org X-Mailman-Version: 2.1.39 Precedence: list List-Id: General discussion list for the Python programming language <python-list.python.org> List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>, <mailto:python-list-request@python.org?subject=unsubscribe> List-Archive: <https://mail.python.org/pipermail/python-list/> List-Post: <mailto:python-list@python.org> List-Help: <mailto:python-list-request@python.org?subject=help> List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>, <mailto:python-list-request@python.org?subject=subscribe> X-Mailman-Original-Message-ID: <1743083982.746418398@webmail.jimdo.com> Bytes: 4948 =0ADear all,=0AWe are pleased to invite you to our upcoming online course: = Introduction to Deep Learning for Biologists=0A Dates: 3-7 November 2025 F= ormat: Online=0ACourse website: [ https://www.physalia-courses.org/courses-= workshops/course67/ ]( https://www.physalia-courses.org/courses-workshops/c= ourse67/ )=0A =0A =0AThis course will provide a practical introduction to d= eep learning and its applications in biological research. Participants will= learn:=0A- The fundamentals of deep learning architectures- How to apply= Convolutional Neural Networks (CNNs) to classification, regression, and im= age segmentation tasks- Best practices for evaluating model performance an= d avoiding overfitting=0A- Hands-on implementation using Python, Jupyter No= tebooks, and Linux=0A =0A =0AThis course is designed for students, research= ers, and professionals interested in integrating deep learning into their w= ork. Prior programming experience is helpful but not required.=0A =0ABest r= egards,=0ACarlo=0A =0A =0A--------------------=0A=0ACarlo Pecoraro, Ph.D=0A= =0A=0APhysalia-courses DIRECTOR=0A=0Ainfo@physalia-courses.org=0A=0Amobile:= +49 17645230846=0A=0A[ Bluesky ]( https://bsky.app/profile/physaliacourses= ..bsky.social ) [ Linkedin ]( https://www.linkedin.com/in/physalia-courses-a= 64418127/ )=0A=0A