Deutsch   English   Français   Italiano  
<mailman.143.1743088611.2912.python-list@python.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!fu-berlin.de!uni-berlin.de!not-for-mail
From: "info@physalia-courses.org" <info@physalia-courses.org>
Newsgroups: comp.lang.python
Subject: Online course: Introduction to Deep Learning in Python
Date: Thu, 27 Mar 2025 14:59:42 +0100 (CET)
Lines: 18
Message-ID: <mailman.143.1743088611.2912.python-list@python.org>
References: <1743083982.746418398@webmail.jimdo.com>
Mime-Version: 1.0
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
X-Trace: news.uni-berlin.de bAIvC+3HC7LdxOzRl7XqtAenTAKEOAhDqq1dCuB78S9g==
Cancel-Lock: sha1:ovIQ6kbk1YrznXy5QFSaMemoGQw= sha256:NHYQvQstsLId9J4gfmpUZFE3K510a+nH5RqaBb6V328=
Return-Path: <info@physalia-courses.org>
X-Original-To: python-list@python.org
Delivered-To: python-list@mail.python.org
Authentication-Results: mail.python.org; dkim=none reason="no signature";
 dkim-adsp=none (unprotected policy); dkim-atps=neutral
X-Spam-Status: OK 0.037
X-Spam-Evidence: '*H*': 0.93; '*S*': 0.00; 'hands-on': 0.05; 'linux':
 0.09; 'segmentation': 0.09; 'url:social': 0.09; 'subject:Python':
 0.12; 'received:173': 0.13; '(cnns)': 0.16; '2025': 0.16;
 'evaluating': 0.16; 'jupyter': 0.16; 'neural': 0.16; 'notebooks,':
 0.16; 'received:173.203': 0.16; 'received:173.203.187': 0.16;
 'received:iad3a.emailsrvr.com': 0.16; 'regression,': 0.16;
 'researchers,': 0.16; 'subject:Learning': 0.16; 'url-
 ip:3.255.48.233/32': 0.16; 'url-ip:3.255.48/24': 0.16; 'url-
 ip:3.255/16': 0.16; 'url-ip:52.215.95.29/32': 0.16; 'url-
 ip:52.215.95/24': 0.16; 'url-ip:52.215/16': 0.16; 'url-
 ip:54.194.127.198/32': 0.16; 'url-ip:54.194.127/24': 0.16; 'url-
 ip:54.194/16': 0.16; 'applications': 0.17; 'invite': 0.19;
 'to:addr:python-list': 0.20; 'all,': 0.20; 'python,': 0.25;
 'programming': 0.25; 'practices': 0.26; 'deep': 0.31;
 'fundamentals': 0.32; 'research.': 0.32; 'but': 0.32; 'mobile:':
 0.35; 'networks': 0.35; 'image': 0.36; 'work.': 0.37; 'using':
 0.37; 'url-ip:104.18.41.41/32': 0.39; 'url-ip:104.18.41/24': 0.39;
 'url-ip:172.64.146.215/32': 0.39; 'url-ip:172.64.146/24': 0.39;
 'website:': 0.60; 'best': 0.61; 'introduction': 0.61; 'dear':
 0.62; 'our': 0.63; 'online': 0.63; 'linkedin': 0.64; 'experience':
 0.64; 'pleased': 0.67; 'interested': 0.68; 'integrating': 0.69;
 'performance': 0.71; 'url-ip:18/8': 0.72; 'email name:info': 0.80;
 'practical': 0.84; 'carlo': 0.84; 'dates:': 0.84; 'received:(smtp
 server)': 0.84; 'subject:Online': 0.84; 'url:app': 0.86;
 'avoiding': 0.91; 'biological': 0.91; 'subject:Introduction':
 0.91; 'format:': 0.93; 'from:addr:info': 0.97
X-Auth-ID: info@physalia-courses.org
Importance: Normal
X-Priority: 3 (Normal)
X-Type: html
X-Client-IP: 95.91.209.149
X-Mailer: webmail/19.0.28-RC
X-Classification-ID: 17c02172-1a18-4270-9062-757422e496fd-1-1
X-Content-Filtered-By: Mailman/MimeDel 2.1.39
X-BeenThere: python-list@python.org
X-Mailman-Version: 2.1.39
Precedence: list
List-Id: General discussion list for the Python programming language
 <python-list.python.org>
List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>,
 <mailto:python-list-request@python.org?subject=unsubscribe>
List-Archive: <https://mail.python.org/pipermail/python-list/>
List-Post: <mailto:python-list@python.org>
List-Help: <mailto:python-list-request@python.org?subject=help>
List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>,
 <mailto:python-list-request@python.org?subject=subscribe>
X-Mailman-Original-Message-ID: <1743083982.746418398@webmail.jimdo.com>
Bytes: 4948

=0ADear all,=0AWe are pleased to invite you to our upcoming online course: =
 Introduction to Deep Learning for Biologists=0A Dates: 3-7 November 2025 F=
ormat: Online=0ACourse website: [ https://www.physalia-courses.org/courses-=
workshops/course67/ ]( https://www.physalia-courses.org/courses-workshops/c=
ourse67/ )=0A =0A =0AThis course will provide a practical introduction to d=
eep learning and its applications in biological research. Participants will=
 learn:=0A-  The fundamentals of deep learning architectures-  How to apply=
 Convolutional Neural Networks (CNNs) to classification, regression, and im=
age segmentation tasks-  Best practices for evaluating model performance an=
d avoiding overfitting=0A- Hands-on implementation using Python, Jupyter No=
tebooks, and Linux=0A =0A =0AThis course is designed for students, research=
ers, and professionals interested in integrating deep learning into their w=
ork. Prior programming experience is helpful but not required.=0A =0ABest r=
egards,=0ACarlo=0A =0A =0A--------------------=0A=0ACarlo Pecoraro, Ph.D=0A=
=0A=0APhysalia-courses DIRECTOR=0A=0Ainfo@physalia-courses.org=0A=0Amobile:=
 +49 17645230846=0A=0A[ Bluesky ]( https://bsky.app/profile/physaliacourses=
..bsky.social ) [ Linkedin ]( https://www.linkedin.com/in/physalia-courses-a=
64418127/ )=0A=0A