Deutsch   English   Français   Italiano  
<mailman.48.1722368082.2981.python-list@python.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!fu-berlin.de!uni-berlin.de!not-for-mail
From: Thomas Passin <list1@tompassin.net>
Newsgroups: comp.lang.python
Subject: Re: Predicting an object over an pretrained model is not working
Date: Tue, 30 Jul 2024 15:25:39 -0400
Lines: 237
Message-ID: <mailman.48.1722368082.2981.python-list@python.org>
References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com>
 <263356ef-7ad8-4abc-9940-bd8536ee13eb@tompassin.net>
Mime-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
X-Trace: news.uni-berlin.de hx1vTBTEcjS+XqfRNzNrYgLXG+0uKqH7v75oGJRNZhog==
Cancel-Lock: sha1:n0tNegIomZBlfLNRvPhJkrt/q40= sha256:xHqFLMkN5giwE6wjhQ9IjsmBzzTyZIA47u1QYlHscwo=
Return-Path: <list1@tompassin.net>
X-Original-To: python-list@python.org
Delivered-To: python-list@mail.python.org
Authentication-Results: mail.python.org; dkim=pass
 reason="2048-bit key; unprotected key"
 header.d=tompassin.net header.i=@tompassin.net header.b=ow769Nsy;
 dkim-adsp=pass; dkim-atps=neutral
X-Spam-Status: OK 0.002
X-Spam-Evidence: '*H*': 1.00; '*S*': 0.00; 'def': 0.04; 'knows': 0.04;
 'image.': 0.07; '"""': 0.09; 'cell.': 0.09; 'code?': 0.09;
 'compute': 0.09; 'coordinate': 0.09; 'output:': 0.09; 'skip:x 10':
 0.09; 'subject:not': 0.09; 'tensorflow': 0.09; 'threshold': 0.09;
 '(1,': 0.16; 'annotated': 0.16; 'args:': 0.16; 'box.': 0.16;
 'dict': 0.16; 'input.': 0.16; 'possible?': 0.16; 'predicts': 0.16;
 'received:10.0.0': 0.16; 'received:64.90': 0.16;
 'received:64.90.62': 0.16; 'received:64.90.62.162': 0.16;
 'received:dreamhost.com': 0.16; 'skip:5 20': 0.16;
 'subject:model': 0.16; 'subject:working': 0.16; 'wrote:': 0.16;
 'problem': 0.16; 'figure': 0.19; 'implement': 0.19; 'pm,': 0.19;
 'to:addr:python-list': 0.20; 'all,': 0.20; 'input': 0.21; 'skip:_
 10': 0.22; 'code': 0.23; 'skip:p 30': 0.23; 'classes': 0.26;
 'object': 0.26; 'else': 0.27; 'expect': 0.28; 'output': 0.28;
 'header:User-Agent:1': 0.30; 'code,': 0.31; 'objects': 0.32;
 'python-list': 0.32; 'received:10.0': 0.32;
 'received:mailchannels.net': 0.32;
 'received:relay.mailchannels.net': 0.32; 'skip:2 10': 0.32;
 'able': 0.34; 'skip:" 20': 0.34; 'header:In-Reply-To:1': 0.34;
 'trying': 0.35; 'skip:2 20': 0.35; 'following': 0.35; 'fix': 0.36;
 'target': 0.36; 'source': 0.36; "skip:' 10": 0.37; 'using': 0.37;
 'class': 0.37; 'two': 0.39; 'added': 0.39; 'single': 0.39;
 '(with': 0.39; 'processed': 0.40; 'skip:( 30': 0.40; 'want': 0.40;
 'skip:0 20': 0.61; 'skip:o 10': 0.61; 'subject': 0.63; 'skip:m
 20': 0.63; 'skip:b 10': 0.63; 'skip:k 10': 0.64; 'key': 0.64;
 'skip:r 20': 0.64; 'box': 0.65; 'skip:t 20': 0.66; 'skip:1 20':
 0.67; 'areas': 0.67; 'maximum': 0.67; 'header:Received:6': 0.67;
 'received:64': 0.67; 'order': 0.69; 'model.': 0.69; 'prediction':
 0.69; 'skip:y 30': 0.69; 'skip:4 10': 0.75; 'skip:y 10': 0.76;
 'detection': 0.76; 'database': 0.80; 'position': 0.81;
 'subject:over': 0.84
X-Sender-Id: dreamhost|x-authsender|tpassin@tompassin.net
ARC-Seal: i=1; s=arc-2022; d=mailchannels.net; t=1722367540; a=rsa-sha256;
 cv=none;
 b=PzQSb4g5XAtphTtaMOyxCnDFgIuZ87y59A9m5lbbZdc7Zt6RglqTvc6imMG0EFrPkYyqWY
 +I87CYKLibg7Zl2SSy30hNmfP0etlOvQ/zeqHzydYdCUpV8lxiZWgJuKA1nv+l8tHjhRvq
 jUdNPZMlt6p+LfksfxzkPxpR3iHHQc7Ib0PBUNA8WOr+m4iAzjbmNlbe/Z6Hkm2KQvsyl/
 qAbBvd7W8E2ydIdxsqYn0KppNdlO6ecEeZser2RgsiiEHjzWVpQfMa/KvDtQkp71IKbVQy
 NhEQRj4a65XBRxHZ+s233JK3E3LoaEA03OhqKZ5euvkgvJsyVhknnPzE+6Kuaw==
ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed;
 d=mailchannels.net; s=arc-2022; t=1722367540;
 h=from:from:reply-to:subject:subject:date:date:message-id:message-id:
 to:to:cc:mime-version:mime-version:content-type:content-type:
 content-transfer-encoding:content-transfer-encoding:
 in-reply-to:in-reply-to:references:references:dkim-signature;
 bh=97DfcKHiJaULFPv+/K78VpTX0GJd6C0DRCAVGxvwXZs=;
 b=WXG73xE22HCGYgZxhFkrC1fwjjJc5beRcyU0U03+mcNXJDaWo+oGGvu4fL/SoMTqcq0uLF
 1Ymvg2jzERPqlGcEPLqrsmKMOiPbP3nKiNDU2wQW39n/Ai4joWxbVun2CbZJzj6QAVkd5V
 50H1fZzKjsLXlomK0bv9U8gqzh8EOS0VLCs9DfKa+D/Sl2aedJFCPRGhN0fIG83WPYYK4K
 RqQ66b3+4yK0WDm5GdRufR1fcXu+B0Y3OPi5FRnaeNsYsp8XzXMo6bwpJFdJS2XZk880X5
 4xe5exp/8IizJm0qL8cr6CgwcodGRkyNaRNe/vfIW8X1ndTcff8UIqLmpeXAGw==
ARC-Authentication-Results: i=1; rspamd-7f77fccf7d-q2sd5;
 auth=pass smtp.auth=dreamhost smtp.mailfrom=list1@tompassin.net
X-Sender-Id: dreamhost|x-authsender|tpassin@tompassin.net
X-MC-Relay: Neutral
X-MailChannels-SenderId: dreamhost|x-authsender|tpassin@tompassin.net
X-MailChannels-Auth-Id: dreamhost
X-Grain-Abaft: 605770d743393d44_1722367540900_2671915413
X-MC-Loop-Signature: 1722367540900:3290411969
X-MC-Ingress-Time: 1722367540900
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=tompassin.net;
 s=dreamhost; t=1722367540;
 bh=97DfcKHiJaULFPv+/K78VpTX0GJd6C0DRCAVGxvwXZs=;
 h=Date:Subject:To:From:Content-Type:Content-Transfer-Encoding;
 b=ow769NsykU9OZxUHi8OIq9BXTmN1gHUEoeXL/kvw7lwaswAZ5cE3FTtDNdp+jBq64
 ap/SBav79kB3kEZuLDkgXfI8BbcbYM/fzeNVprM26hNdq+cFSwjQ8Fhs3kNjKq9Kc0
 8xw70lL3o/hwVQImRvGcQSTKzgpmf5S7uYxri2hCxLPwrhB5c9/Q6JLqRX9zk/+RAb
 mod2b0HG0Ti7Q97WBs3aM8l7EEL42YgF0wyoYUmUegN4hBBy1oT31cvaGSdHgMQEI/
 SaJsLZPxHI9+Yg2BaQJGKke7sxn8acZMDZPAY3dhlFDuZwSx7eiGpInEMQibusoArh
 fHD8W7dJEGGoA==
User-Agent: Mozilla Thunderbird
Content-Language: en-US
In-Reply-To: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com>
X-BeenThere: python-list@python.org
X-Mailman-Version: 2.1.39
Precedence: list
List-Id: General discussion list for the Python programming language
 <python-list.python.org>
List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>,
 <mailto:python-list-request@python.org?subject=unsubscribe>
List-Archive: <https://mail.python.org/pipermail/python-list/>
List-Post: <mailto:python-list@python.org>
List-Help: <mailto:python-list-request@python.org?subject=help>
List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>,
 <mailto:python-list-request@python.org?subject=subscribe>
X-Mailman-Original-Message-ID: <263356ef-7ad8-4abc-9940-bd8536ee13eb@tompassin.net>
X-Mailman-Original-References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com>
Bytes: 16712

On 7/30/2024 2:18 PM, marc nicole via Python-list wrote:
> Hello all,
> 
> I want to predict an object by given as input an image and want to have my
> model be able to predict the label. I have trained a model using tensorflow
> based on annotated database where the target object to predict was added to
> the pretrained model. the code I am using is the following where I set the
> target object image as input and want to have the prediction output:
> 
> 
> 
> 
> 
> 
> 
> 
> class MultiObjectDetection():
> 
>      def __init__(self, classes_name):
> 
>          self._classes_name = classes_name
>          self._num_classes = len(classes_name)
> 
>          self._common_params = {'image_size': 448, 'num_classes':
> self._num_classes,
>                  'batch_size':1}
>          self._net_params = {'cell_size': 7, 'boxes_per_cell':2,
> 'weight_decay': 0.0005}
>          self._net = YoloTinyNet(self._common_params, self._net_params,
> test=True)
> 
>      def predict_object(self, image):
>          predicts = self._net.inference(image)
>          return predicts
> 
>      def process_predicts(self, resized_img, predicts, thresh=0.2):
>          """
>          process the predicts of object detection with one image input.
> 
>          Args:
>              resized_img: resized source image.
>              predicts: output of the model.
>              thresh: thresh of bounding box confidence.
>          Return:
>              predicts_dict: {"stick": [[x1, y1, x2, y2, scores1], [...]]}.
>          """
>          cls_num = self._num_classes
>          bbx_per_cell = self._net_params["boxes_per_cell"]
>          cell_size = self._net_params["cell_size"]
>          img_size = self._common_params["image_size"]
>          p_classes = predicts[0, :, :, 0:cls_num]
>          C = predicts[0, :, :, cls_num:cls_num+bbx_per_cell] # two
> bounding boxes in one cell.
>          coordinate = predicts[0, :, :, cls_num+bbx_per_cell:] # all
> bounding boxes position.
> 
>          p_classes = np.reshape(p_classes, (cell_size, cell_size, 1, cls_num))
>          C = np.reshape(C, (cell_size, cell_size, bbx_per_cell, 1))
> 
>          P = C * p_classes # confidencefor all classes of all bounding
> boxes (cell_size, cell_size, bounding_box_num, class_num) = (7, 7, 2,
> 1).
> 
>          predicts_dict = {}
>          for i in range(cell_size):
>              for j in range(cell_size):
>                  temp_data = np.zeros_like(P, np.float32)
>                  temp_data[i, j, :, :] = P[i, j, :, :]
>                  position = np.argmax(temp_data) # refer to the class
> num (with maximum confidence) for every bounding box.
>                  index = np.unravel_index(position, P.shape)
> 
>                  if P[index] > thresh:
>                      class_num = index[-1]
>                      coordinate = np.reshape(coordinate, (cell_size,
> cell_size, bbx_per_cell, 4)) # (cell_size, cell_size,
> bbox_num_per_cell, coordinate)[xmin, ymin, xmax, ymax]
>                      max_coordinate = coordinate[index[0], index[1], index[2], :]
> 
>                      xcenter = max_coordinate[0]
>                      ycenter = max_coordinate[1]
>                      w = max_coordinate[2]
>                      h = max_coordinate[3]
> 
>                      xcenter = (index[1] + xcenter) * (1.0*img_size /cell_size)
>                      ycenter = (index[0] + ycenter) * (1.0*img_size /cell_size)
> 
>                      w = w * img_size
>                      h = h * img_size
========== REMAINDER OF ARTICLE TRUNCATED ==========