Deutsch English Français Italiano |
<mailman.50.1722376937.2981.python-list@python.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!3.eu.feeder.erje.net!feeder.erje.net!weretis.net!feeder8.news.weretis.net!fu-berlin.de!uni-berlin.de!not-for-mail From: Thomas Passin <list1@tompassin.net> Newsgroups: comp.lang.python Subject: Re: Predicting an object over an pretrained model is not working Date: Tue, 30 Jul 2024 17:45:20 -0400 Lines: 278 Message-ID: <mailman.50.1722376937.2981.python-list@python.org> References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com> <263356ef-7ad8-4abc-9940-bd8536ee13eb@tompassin.net> <CAGJtH9TnoFa_JJNi=E0oDouKZjq_sfGYmr0WOFOfZtaGcQTyXA@mail.gmail.com> <e55832f1-552f-43b8-849f-2a79e77ecbcc@tompassin.net> Mime-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-Trace: news.uni-berlin.de n9jeFKzZwx0NFiICIgQpugG5NYQXwH/bLq5Pqj2CnfAA== Cancel-Lock: sha1:M94y3DkL4R+kdPT8c/uTd0cMD0k= sha256:5qCs96a2vMKE4dAPPu4q6nBmFkmotPe/LM6vfcCbLJs= Return-Path: <list1@tompassin.net> X-Original-To: python-list@python.org Delivered-To: python-list@mail.python.org Authentication-Results: mail.python.org; dkim=pass reason="2048-bit key; unprotected key" header.d=tompassin.net header.i=@tompassin.net header.b=uPOoSnlk; dkim-adsp=pass; dkim-atps=neutral X-Spam-Status: OK 0.002 X-Spam-Evidence: '*H*': 1.00; '*S*': 0.00; 'def': 0.04; 'knows': 0.04; 'image.': 0.07; '"""': 0.09; 'anyway,': 0.09; 'cell.': 0.09; 'code?': 0.09; 'compute': 0.09; 'coordinate': 0.09; 'ok,': 0.09; 'output:': 0.09; 'skip:x 10': 0.09; 'subject:not': 0.09; 'tensorflow': 0.09; 'threshold': 0.09; 'url:mailman': 0.15; '(1,': 0.16; '2024': 0.16; '=\xc2\xa0': 0.16; 'annotated': 0.16; 'args:': 0.16; 'box.': 0.16; 'dict': 0.16; 'input.': 0.16; 'possible?': 0.16; 'predicts': 0.16; 'received:10.0.0': 0.16; 'received:64.90': 0.16; 'received:64.90.62': 0.16; 'received:64.90.62.162': 0.16; 'received:dreamhost.com': 0.16; 'skip:5 20': 0.16; 'subject:model': 0.16; 'subject:working': 0.16; 'value?': 0.16; 'wrote:': 0.16; 'problem': 0.16; 'code.': 0.17; "can't": 0.17; 'calls': 0.19; 'figure': 0.19; 'implement': 0.19; 'pm,': 0.19; 'to:addr:python-list': 0.20; 'all,': 0.20; 'input': 0.21; 'skip:_ 10': 0.22; "what's": 0.22; 'code': 0.23; 'skip:p 30': 0.23; 'url- ip:188.166.95.178/32': 0.25; 'url-ip:188.166.95/24': 0.25; 'url:listinfo': 0.25; 'url-ip:188.166/16': 0.25; 'classes': 0.26; 'object': 0.26; 'else': 0.27; 'function': 0.27; 'expect': 0.28; 'output': 0.28; 'header:User-Agent:1': 0.30; 'code,': 0.31; 'url- ip:188/8': 0.31; 'objects': 0.32; 'python-list': 0.32; 'received:10.0': 0.32; 'received:mailchannels.net': 0.32; 'received:relay.mailchannels.net': 0.32; "wouldn't": 0.32; 'skip:2 10': 0.32; 'but': 0.32; 'able': 0.34; 'skip:" 20': 0.34; 'header :In-Reply-To:1': 0.34; 'trying': 0.35; 'one.': 0.35; 'skip:2 20': 0.35; 'following': 0.35; 'fix': 0.36; 'target': 0.36; 'source': 0.36; 'those': 0.36; "skip:' 10": 0.37; 'really': 0.37; 'using': 0.37; "it's": 0.37; 'class': 0.37; 'two': 0.39; 'added': 0.39; 'single': 0.39; 'otherwise': 0.39; '(with': 0.39; 'processed': 0.40; 'skip:( 30': 0.40; 'want': 0.40; 'skip:0 20': 0.61; 'skip:o 10': 0.61; 'skip:\xc2 10': 0.62; 'subject': 0.63; 'skip:m 20': 0.63; 'skip:b 10': 0.63; 'skip:k 10': 0.64; 'key': 0.64; 'skip:r 20': 0.64; 'probability': 0.64; 'your': 0.64; 'box': 0.65; 'skip:t 20': 0.66; 'skip:1 20': 0.67; 'areas': 0.67; 'maximum': 0.67; 'header:Received:6': 0.67; 'received:64': 0.67; 'know.': 0.68; 'order': 0.69; 'model.': 0.69; 'prediction': 0.69; 'skip:y 30': 0.69; 'strong': 0.69; 'skip:4 10': 0.75; 'skip:y 10': 0.76; 'detection': 0.76; 'documented': 0.76; 'database': 0.80; 'position': 0.81; 'represented': 0.84; 'subject:over': 0.84; '\xc3\xa9crit\xc2\xa0:': 0.84; 'greater': 0.91 X-Sender-Id: dreamhost|x-authsender|tpassin@tompassin.net ARC-Seal: i=1; s=arc-2022; d=mailchannels.net; t=1722375921; a=rsa-sha256; cv=none; b=R7/ta1CKJY6ahTs23f8tUoEuysbccwouYR4A+B62Qa7ary92czGfDOJMHEKdYT/oROk0zP 2p0wsROmWIV9M9xrytiAg9JGimKL+bVpjBLgbOs2aeMCEzkbNckY/oj7OVUfkWIixQRISq Pl9isvZaSZGq/ZZ7r3HnZMU0vCiepF9UXvqSNXNrAB7i/7G7+C0s1yMfGmqzmvxpLJE6Gg 5YdDoPmI8a7WwidoX5HbAAnc4oo6B9Lk/DxbAeUWuSFECzfazeL1kE8FydE1L/zR9EKQuJ lG9qhumapFQq1hMPN/ddqULqYUlm6V4sui55twVla4P9ifqIPrz7ZF2+sB19pg== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=mailchannels.net; s=arc-2022; t=1722375921; h=from:from:reply-to:subject:subject:date:date:message-id:message-id: to:to:cc:mime-version:mime-version:content-type:content-type: content-transfer-encoding:content-transfer-encoding: in-reply-to:in-reply-to:references:references:dkim-signature; bh=jHVbcIEKrxNFwWCQZQEFIgxdhD2GcLcqqwmMRpgnBQM=; b=bSc67WhFzdlf6a5q4u4Lvk5BRKNhhxgna2+8lOPATyLZNsmdl5CuoOX4A1j9ll/TjceHIc wPPakTWChoe1SoZTgK+eLYrFKNBwI+kbkxYG4qALps4E4nTyESa1Yn2XtipvzPeTpy7769 lZdYUhQPubiQeJG3MrHdKyk00nw1TvyO0+iJY9JB+qMuF8nnOif5fQO8QgKHElZsvFeYbl kFZFPdepPLwGMpFUiZcAL7/2eVI6Z8Zw7jM4m71JU8Bv77fqJeHSrZNTsMYKhIvKUcyT+d rWKUVD6QwJsUNYRKWmwdIZ7mIFCIRjazy1BSOQGu9/CMobHmvq2TBQFIiemHfg== ARC-Authentication-Results: i=1; rspamd-5c76f4b4d4-gbwng; auth=pass smtp.auth=dreamhost smtp.mailfrom=list1@tompassin.net X-Sender-Id: dreamhost|x-authsender|tpassin@tompassin.net X-MC-Relay: Neutral X-MailChannels-SenderId: dreamhost|x-authsender|tpassin@tompassin.net X-MailChannels-Auth-Id: dreamhost X-Left-Chief: 49b2ce7972010046_1722375921648_4002512632 X-MC-Loop-Signature: 1722375921648:2361207143 X-MC-Ingress-Time: 1722375921648 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=tompassin.net; s=dreamhost; t=1722375921; bh=jHVbcIEKrxNFwWCQZQEFIgxdhD2GcLcqqwmMRpgnBQM=; h=Date:Subject:To:From:Content-Type:Content-Transfer-Encoding; b=uPOoSnlkb5BrItgRRao6YwUOeGNCSUBYfgXXXUEL+dzJKzNT7XdLdk5YbStWct3yE VvpJbS5ug3OghsNXMef3W8ThvmNhoB2XmrNBeMQhfOXzWKQHzNPOMwKNXttRpf0adk POYlKXkOtxhUAuO5gNwA01735Sa8Sv8QwdJVhSX4uU/Bcj8+qtIewbxaObPg8mzEq0 hwA9NeLfkElH7imE0HaIIjZNOfsCxRzDdYuLSbIMWC2NPWGJteqMlrtQCC0Mj3qodx 7WA4jDg2FiNMsKjrxTJo+Zt18KQgApROUO6N6Ixp6ZbKwBFdgcFW2b0kP/ikliL9Ji 4wpr5GSxkt3yA== User-Agent: Mozilla Thunderbird Content-Language: en-US In-Reply-To: <CAGJtH9TnoFa_JJNi=E0oDouKZjq_sfGYmr0WOFOfZtaGcQTyXA@mail.gmail.com> X-BeenThere: python-list@python.org X-Mailman-Version: 2.1.39 Precedence: list List-Id: General discussion list for the Python programming language <python-list.python.org> List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>, <mailto:python-list-request@python.org?subject=unsubscribe> List-Archive: <https://mail.python.org/pipermail/python-list/> List-Post: <mailto:python-list@python.org> List-Help: <mailto:python-list-request@python.org?subject=help> List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>, <mailto:python-list-request@python.org?subject=subscribe> X-Mailman-Original-Message-ID: <e55832f1-552f-43b8-849f-2a79e77ecbcc@tompassin.net> X-Mailman-Original-References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com> <263356ef-7ad8-4abc-9940-bd8536ee13eb@tompassin.net> <CAGJtH9TnoFa_JJNi=E0oDouKZjq_sfGYmr0WOFOfZtaGcQTyXA@mail.gmail.com> Bytes: 20897 On 7/30/2024 4:49 PM, marc nicole wrote: > OK, but how's the probability of small_ball greater than others? I can't > find it anyway, what's its value? It's your code. I wouldn't know. I suppose it's represented somewhere in all those parameters. You need to understand what those function calls are returning. It's documented somewhere, right? And you really do need to know the probabilities of the competing images because otherwise you won't know how confident you can be that the identification is a strong one. > Le mar. 30 juil. 2024 à 21:37, Thomas Passin via Python-list > <python-list@python.org <mailto:python-list@python.org>> a écrit : > > On 7/30/2024 2:18 PM, marc nicole via Python-list wrote: > > Hello all, > > > > I want to predict an object by given as input an image and want > to have my > > model be able to predict the label. I have trained a model using > tensorflow > > based on annotated database where the target object to predict > was added to > > the pretrained model. the code I am using is the following where > I set the > > target object image as input and want to have the prediction output: > > > > > > > > > > > > > > > > > > class MultiObjectDetection(): > > > > def __init__(self, classes_name): > > > > self._classes_name = classes_name > > self._num_classes = len(classes_name) > > > > self._common_params = {'image_size': 448, 'num_classes': > > self._num_classes, > > 'batch_size':1} > > self._net_params = {'cell_size': 7, 'boxes_per_cell':2, > > 'weight_decay': 0.0005} > > self._net = YoloTinyNet(self._common_params, > self._net_params, > > test=True) > > > > def predict_object(self, image): > > predicts = self._net.inference(image) > > return predicts > > > > def process_predicts(self, resized_img, predicts, thresh=0.2): > > """ > > process the predicts of object detection with one image > input. > > > > Args: > > resized_img: resized source image. > > predicts: output of the model. > > thresh: thresh of bounding box confidence. > > Return: > > predicts_dict: {"stick": [[x1, y1, x2, y2, scores1], > [...]]}. > > """ > > cls_num = self._num_classes > > bbx_per_cell = self._net_params["boxes_per_cell"] > > cell_size = self._net_params["cell_size"] > > img_size = self._common_params["image_size"] > > p_classes = predicts[0, :, :, 0:cls_num] > > C = predicts[0, :, :, cls_num:cls_num+bbx_per_cell] # two > > bounding boxes in one cell. > > coordinate = predicts[0, :, :, cls_num+bbx_per_cell:] # all > > bounding boxes position. ========== REMAINDER OF ARTICLE TRUNCATED ==========