Deutsch   English   Français   Italiano  
<mailman.52.1722421642.2981.python-list@python.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!feeds.phibee-telecom.net!weretis.net!feeder8.news.weretis.net!fu-berlin.de!uni-berlin.de!not-for-mail
From: marc nicole <mk1853387@gmail.com>
Newsgroups: comp.lang.python
Subject: Re: Predicting an object over an pretrained model is not working
Date: Wed, 31 Jul 2024 12:27:07 +0200
Lines: 53
Message-ID: <mailman.52.1722421642.2981.python-list@python.org>
References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com>
 <339c86d5-8cb5-4995-b5ba-12f88d71a107@DancesWithMice.info>
 <CAGJtH9RnQ=bRPs1xh+xo-tj7tMMjfCCNGTe9C0ArvuY_KTFvEg@mail.gmail.com>
Mime-Version: 1.0
Content-Type: text/plain; charset="UTF-8"
X-Trace: news.uni-berlin.de KXXI4GW7L9CBD8fFo4Z9TAZv6XEAKgfOQM5NL+4QwGXg==
Cancel-Lock: sha1:WC1VGVhdi1cl8LskmWOEFRgg5D0= sha256:OwjqM3GKIrL1fvxrJ5cnNamJfkrTTUbv4cecsN73Hlk=
Return-Path: <mk1853387@gmail.com>
X-Original-To: python-list@python.org
Delivered-To: python-list@mail.python.org
Authentication-Results: mail.python.org; dkim=pass
 reason="2048-bit key; unprotected key"
 header.d=gmail.com header.i=@gmail.com header.b=UA1NOIFx;
 dkim-adsp=pass; dkim-atps=neutral
X-Spam-Status: OK 0.017
X-Spam-Evidence: '*H*': 0.97; '*S*': 0.00; 'jul': 0.04; '(assuming':
 0.09; '=dn': 0.09; 'code?': 0.09; 'output:': 0.09; 'subject:not':
 0.09; 'tensorflow': 0.09; 'train': 0.09; '>': 0.14;
 'url:mailman': 0.15; 'annotated': 0.16; 'dict': 0.16; 'numbers?':
 0.16; 'possible?': 0.16; 'sheep': 0.16; 'skip:5 20': 0.16;
 'sorted': 0.16; 'subject:model': 0.16; 'subject:working': 0.16;
 'wrote:': 0.16; 'to:addr:python-list': 0.20; 'all,': 0.20;
 'input': 0.21; 'code': 0.23; 'url-ip:188.166.95.178/32': 0.25;
 'url-ip:188.166.95/24': 0.25; 'url:listinfo': 0.25; 'url-
 ip:188.166/16': 0.25; 'classes': 0.26; 'object': 0.26; 'expect':
 0.28; 'email addr:python.org>': 0.28; 'url-ip:188/8': 0.31;
 'python-list': 0.32; 'message-id:@mail.gmail.com': 0.32; 'but':
 0.32; 'able': 0.34; 'header:In-Reply-To:1': 0.34;
 'received:google.com': 0.34; 'meaning': 0.35; 'following': 0.35;
 'from:addr:gmail.com': 0.35; 'fix': 0.36; 'target': 0.36; 'those':
 0.36; 'using': 0.37; 'added': 0.39; 'wed,': 0.39; 'want': 0.40;
 'tell': 0.60; 'likely': 0.61; 'key': 0.64; '8bit%:4': 0.64;
 'probability': 0.64; 'well': 0.65; 'numbers': 0.67; 'shows': 0.67;
 'that,': 0.67; 'order': 0.69; 'model.': 0.69; 'prediction': 0.69;
 'skip:4 10': 0.75; '....': 0.76; 'database': 0.80; 'position':
 0.81; 'study': 0.82; 'email name:<python-list': 0.84;
 'subject:over': 0.84
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
 d=gmail.com; s=20230601; t=1722421639; x=1723026439; darn=python.org;
 h=to:subject:message-id:date:from:in-reply-to:references:mime-version
 :from:to:cc:subject:date:message-id:reply-to;
 bh=oUYemekfJEwUMee4DTRKSwBt3GEcqsht1HXwLuMLUXM=;
 b=UA1NOIFxN4tlsrUYSNkA1ogYSO6o6YD9KjdzxB5WQxL65n3FxCZRM0CHqiKasBiP5e
 e2Mb8aDkzfKMHsSAlNDrZAmd5eigs3rhQx3uVEYweur4zT4dm/jAnwSQwqD0Y+zN0GV+
 DJyPmx5B+evVCsAiiG1dGq6lYHnBAGQAw8Lv8a8r5ulsawibhtlFM19Gh987mwAOWTeQ
 DXO0jlsvknoNf/XcnY5RrOMFam5ut4M/G+8lclOwyuYp9XmEV8Fo6fWVUbbRqivHZGBs
 sSqPehQx2F/chEtXrPKmBYv6OHJ0Zb5Ne6eYIlVMz2MltKEYpfZMolJZjqEwwFm0nKd7
 HSqw==
X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
 d=1e100.net; s=20230601; t=1722421639; x=1723026439;
 h=to:subject:message-id:date:from:in-reply-to:references:mime-version
 :x-gm-message-state:from:to:cc:subject:date:message-id:reply-to;
 bh=oUYemekfJEwUMee4DTRKSwBt3GEcqsht1HXwLuMLUXM=;
 b=Tz7P0MzDAtdBx8aKU9rcxzgVY2pfX+iy2hakAIh74vf4P1NhcyeTbhF6iHImOXtjNd
 eBW7a9cKs83nRjVDMkrRYGcZA7GjPiqZ81Wo/LVnaNVVGG9MQfvifdnR3mIAk7jG5pFa
 xiZZK7WkXnznigl3oUVi4m3CzmKN1QKJqCQK/jc+lyWFbOkuUFTcoUflUQiuxKZ9jLfh
 fxi+6B/0RwqTJDGiElZwLSCA8gmKJv464IPplvVI0nbfeP8PQNKW9LfDndcxGeBQ+jQ1
 Hh+CLDrPFpwYcDrUGr8PR8JhUwOUu9YKF/VqPwKMvgFPRIJaZHm05RVMDZ5/Sg+WJvau
 u87Q==
X-Forwarded-Encrypted: i=1;
 AJvYcCUONA7loE7og4v5GVmMmkYL3pdV8nP4jFmRvhAjUJ76AXbvTG7jM6RFkRVR6H5O0MQ64VQavWA9ieazfxdJAk+faRJ5ra/A
X-Gm-Message-State: AOJu0YzTK6xKxNYQqfPp/a1GFrcLDBruaKrMM5NNQ3DXaqdFZ+XWDZMe
 3HJR3jIZWSSv36BF5aIufPKN+4Khr+l1XlW0dwmym+jhRLZ/xkeampXN3e5MJG72wDk1/THoU4Q
 dvtz9uTNXhCeURWUFGtDtg63BxtyT1V27
X-Google-Smtp-Source: AGHT+IFcIxYjyi6rrAa8Z563OCCzMswvD7UH3NzxxFDSOGEY6b4JG41SBteL1FkM7ZX8JwwY8fNHotnfkqlYA/PL4YM=
X-Received: by 2002:a05:690c:6d09:b0:62c:f82b:553f with SMTP id
 00721157ae682-67a0968de49mr179819107b3.31.1722421639144; Wed, 31 Jul 2024
 03:27:19 -0700 (PDT)
In-Reply-To: <339c86d5-8cb5-4995-b5ba-12f88d71a107@DancesWithMice.info>
X-Content-Filtered-By: Mailman/MimeDel 2.1.39
X-BeenThere: python-list@python.org
X-Mailman-Version: 2.1.39
Precedence: list
List-Id: General discussion list for the Python programming language
 <python-list.python.org>
List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>,
 <mailto:python-list-request@python.org?subject=unsubscribe>
List-Archive: <https://mail.python.org/pipermail/python-list/>
List-Post: <mailto:python-list@python.org>
List-Help: <mailto:python-list-request@python.org?subject=help>
List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>,
 <mailto:python-list-request@python.org?subject=subscribe>
X-Mailman-Original-Message-ID: <CAGJtH9RnQ=bRPs1xh+xo-tj7tMMjfCCNGTe9C0ArvuY_KTFvEg@mail.gmail.com>
X-Mailman-Original-References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com>
 <339c86d5-8cb5-4995-b5ba-12f88d71a107@DancesWithMice.info>
Bytes: 7242

I suppose the meaning of those numbers comes from this line
predicts_dict[class_name].append([int(xmin), int(ymin), int(xmax), int(ymax),
P[index]]) as well as the yolo inference call. But i was expecting zeros
for all classes except smallball. Because the image only shows that, and
that a train and a sheep wont have any target position or any probability
whatsoever in the image weirdobject.jpg


On Wed, 31 Jul 2024, 00:19 dn via Python-list, <python-list@python.org>
wrote:

> On 31/07/24 06:18, marc nicole via Python-list wrote:
> > Hello all,
> >
> > I want to predict an object by given as input an image and want to have
> my
> > model be able to predict the label. I have trained a model using
> tensorflow
> > based on annotated database where the target object to predict was added
> to
> > the pretrained model. the code I am using is the following where I set
> the
> > target object image as input and want to have the prediction output:
>
> ...
>
>
> > WHile I expect only the dict to contain the small_ball key
>
> > How's that is possible? where's the prediction output?How to fix the
> code?
>
>
> To save us lots of reading and study to be able to help you, please advise:
>
> 1 what are the meanings of all these numbers?
>
> > 'sheep': [[233.0, 92.0, 448.0, -103.0,
> >> 5.3531270027160645], [167.0, 509.0, 209.0, 101.0, 4.947688579559326],
> >> [0.0, 0.0, 448.0, 431.0, 3.393721580505371]]
>
> 2 (assuming it hasn't) why the dict has not been sorted into a
> meaningful order
>
> 3 how can one tell that the image is more likely to be a sheep than a
> train?
>
> --
> Regards,
> =dn
> --
> https://mail.python.org/mailman/listinfo/python-list
>