Deutsch English Français Italiano |
<mailman.52.1722421642.2981.python-list@python.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!weretis.net!feeder8.news.weretis.net!fu-berlin.de!uni-berlin.de!not-for-mail From: marc nicole <mk1853387@gmail.com> Newsgroups: comp.lang.python Subject: Re: Predicting an object over an pretrained model is not working Date: Wed, 31 Jul 2024 12:27:07 +0200 Lines: 53 Message-ID: <mailman.52.1722421642.2981.python-list@python.org> References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com> <339c86d5-8cb5-4995-b5ba-12f88d71a107@DancesWithMice.info> <CAGJtH9RnQ=bRPs1xh+xo-tj7tMMjfCCNGTe9C0ArvuY_KTFvEg@mail.gmail.com> Mime-Version: 1.0 Content-Type: text/plain; charset="UTF-8" X-Trace: news.uni-berlin.de KXXI4GW7L9CBD8fFo4Z9TAZv6XEAKgfOQM5NL+4QwGXg== Cancel-Lock: sha1:WC1VGVhdi1cl8LskmWOEFRgg5D0= sha256:OwjqM3GKIrL1fvxrJ5cnNamJfkrTTUbv4cecsN73Hlk= Return-Path: <mk1853387@gmail.com> X-Original-To: python-list@python.org Delivered-To: python-list@mail.python.org Authentication-Results: mail.python.org; dkim=pass reason="2048-bit key; unprotected key" header.d=gmail.com header.i=@gmail.com header.b=UA1NOIFx; dkim-adsp=pass; dkim-atps=neutral X-Spam-Status: OK 0.017 X-Spam-Evidence: '*H*': 0.97; '*S*': 0.00; 'jul': 0.04; '(assuming': 0.09; '=dn': 0.09; 'code?': 0.09; 'output:': 0.09; 'subject:not': 0.09; 'tensorflow': 0.09; 'train': 0.09; '>': 0.14; 'url:mailman': 0.15; 'annotated': 0.16; 'dict': 0.16; 'numbers?': 0.16; 'possible?': 0.16; 'sheep': 0.16; 'skip:5 20': 0.16; 'sorted': 0.16; 'subject:model': 0.16; 'subject:working': 0.16; 'wrote:': 0.16; 'to:addr:python-list': 0.20; 'all,': 0.20; 'input': 0.21; 'code': 0.23; 'url-ip:188.166.95.178/32': 0.25; 'url-ip:188.166.95/24': 0.25; 'url:listinfo': 0.25; 'url- ip:188.166/16': 0.25; 'classes': 0.26; 'object': 0.26; 'expect': 0.28; 'email addr:python.org>': 0.28; 'url-ip:188/8': 0.31; 'python-list': 0.32; 'message-id:@mail.gmail.com': 0.32; 'but': 0.32; 'able': 0.34; 'header:In-Reply-To:1': 0.34; 'received:google.com': 0.34; 'meaning': 0.35; 'following': 0.35; 'from:addr:gmail.com': 0.35; 'fix': 0.36; 'target': 0.36; 'those': 0.36; 'using': 0.37; 'added': 0.39; 'wed,': 0.39; 'want': 0.40; 'tell': 0.60; 'likely': 0.61; 'key': 0.64; '8bit%:4': 0.64; 'probability': 0.64; 'well': 0.65; 'numbers': 0.67; 'shows': 0.67; 'that,': 0.67; 'order': 0.69; 'model.': 0.69; 'prediction': 0.69; 'skip:4 10': 0.75; '....': 0.76; 'database': 0.80; 'position': 0.81; 'study': 0.82; 'email name:<python-list': 0.84; 'subject:over': 0.84 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20230601; t=1722421639; x=1723026439; darn=python.org; h=to:subject:message-id:date:from:in-reply-to:references:mime-version :from:to:cc:subject:date:message-id:reply-to; bh=oUYemekfJEwUMee4DTRKSwBt3GEcqsht1HXwLuMLUXM=; b=UA1NOIFxN4tlsrUYSNkA1ogYSO6o6YD9KjdzxB5WQxL65n3FxCZRM0CHqiKasBiP5e e2Mb8aDkzfKMHsSAlNDrZAmd5eigs3rhQx3uVEYweur4zT4dm/jAnwSQwqD0Y+zN0GV+ DJyPmx5B+evVCsAiiG1dGq6lYHnBAGQAw8Lv8a8r5ulsawibhtlFM19Gh987mwAOWTeQ DXO0jlsvknoNf/XcnY5RrOMFam5ut4M/G+8lclOwyuYp9XmEV8Fo6fWVUbbRqivHZGBs sSqPehQx2F/chEtXrPKmBYv6OHJ0Zb5Ne6eYIlVMz2MltKEYpfZMolJZjqEwwFm0nKd7 HSqw== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20230601; t=1722421639; x=1723026439; h=to:subject:message-id:date:from:in-reply-to:references:mime-version :x-gm-message-state:from:to:cc:subject:date:message-id:reply-to; bh=oUYemekfJEwUMee4DTRKSwBt3GEcqsht1HXwLuMLUXM=; b=Tz7P0MzDAtdBx8aKU9rcxzgVY2pfX+iy2hakAIh74vf4P1NhcyeTbhF6iHImOXtjNd eBW7a9cKs83nRjVDMkrRYGcZA7GjPiqZ81Wo/LVnaNVVGG9MQfvifdnR3mIAk7jG5pFa xiZZK7WkXnznigl3oUVi4m3CzmKN1QKJqCQK/jc+lyWFbOkuUFTcoUflUQiuxKZ9jLfh fxi+6B/0RwqTJDGiElZwLSCA8gmKJv464IPplvVI0nbfeP8PQNKW9LfDndcxGeBQ+jQ1 Hh+CLDrPFpwYcDrUGr8PR8JhUwOUu9YKF/VqPwKMvgFPRIJaZHm05RVMDZ5/Sg+WJvau u87Q== X-Forwarded-Encrypted: i=1; AJvYcCUONA7loE7og4v5GVmMmkYL3pdV8nP4jFmRvhAjUJ76AXbvTG7jM6RFkRVR6H5O0MQ64VQavWA9ieazfxdJAk+faRJ5ra/A X-Gm-Message-State: AOJu0YzTK6xKxNYQqfPp/a1GFrcLDBruaKrMM5NNQ3DXaqdFZ+XWDZMe 3HJR3jIZWSSv36BF5aIufPKN+4Khr+l1XlW0dwmym+jhRLZ/xkeampXN3e5MJG72wDk1/THoU4Q dvtz9uTNXhCeURWUFGtDtg63BxtyT1V27 X-Google-Smtp-Source: AGHT+IFcIxYjyi6rrAa8Z563OCCzMswvD7UH3NzxxFDSOGEY6b4JG41SBteL1FkM7ZX8JwwY8fNHotnfkqlYA/PL4YM= X-Received: by 2002:a05:690c:6d09:b0:62c:f82b:553f with SMTP id 00721157ae682-67a0968de49mr179819107b3.31.1722421639144; Wed, 31 Jul 2024 03:27:19 -0700 (PDT) In-Reply-To: <339c86d5-8cb5-4995-b5ba-12f88d71a107@DancesWithMice.info> X-Content-Filtered-By: Mailman/MimeDel 2.1.39 X-BeenThere: python-list@python.org X-Mailman-Version: 2.1.39 Precedence: list List-Id: General discussion list for the Python programming language <python-list.python.org> List-Unsubscribe: <https://mail.python.org/mailman/options/python-list>, <mailto:python-list-request@python.org?subject=unsubscribe> List-Archive: <https://mail.python.org/pipermail/python-list/> List-Post: <mailto:python-list@python.org> List-Help: <mailto:python-list-request@python.org?subject=help> List-Subscribe: <https://mail.python.org/mailman/listinfo/python-list>, <mailto:python-list-request@python.org?subject=subscribe> X-Mailman-Original-Message-ID: <CAGJtH9RnQ=bRPs1xh+xo-tj7tMMjfCCNGTe9C0ArvuY_KTFvEg@mail.gmail.com> X-Mailman-Original-References: <CAGJtH9Qjv2fQm=_HKwhoGS11uh+u4YoTVzYGHF=2jZC9HpdV9A@mail.gmail.com> <339c86d5-8cb5-4995-b5ba-12f88d71a107@DancesWithMice.info> Bytes: 7242 I suppose the meaning of those numbers comes from this line predicts_dict[class_name].append([int(xmin), int(ymin), int(xmax), int(ymax), P[index]]) as well as the yolo inference call. But i was expecting zeros for all classes except smallball. Because the image only shows that, and that a train and a sheep wont have any target position or any probability whatsoever in the image weirdobject.jpg On Wed, 31 Jul 2024, 00:19 dn via Python-list, <python-list@python.org> wrote: > On 31/07/24 06:18, marc nicole via Python-list wrote: > > Hello all, > > > > I want to predict an object by given as input an image and want to have > my > > model be able to predict the label. I have trained a model using > tensorflow > > based on annotated database where the target object to predict was added > to > > the pretrained model. the code I am using is the following where I set > the > > target object image as input and want to have the prediction output: > > ... > > > > WHile I expect only the dict to contain the small_ball key > > > How's that is possible? where's the prediction output?How to fix the > code? > > > To save us lots of reading and study to be able to help you, please advise: > > 1 what are the meanings of all these numbers? > > > 'sheep': [[233.0, 92.0, 448.0, -103.0, > >> 5.3531270027160645], [167.0, 509.0, 209.0, 101.0, 4.947688579559326], > >> [0.0, 0.0, 448.0, 431.0, 3.393721580505371]] > > 2 (assuming it hasn't) why the dict has not been sorted into a > meaningful order > > 3 how can one tell that the image is more likely to be a sheep than a > train? > > -- > Regards, > =dn > -- > https://mail.python.org/mailman/listinfo/python-list >