Deutsch   English   Français   Italiano  
<pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.roellig-ltd.de!open-news-network.org!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp
Message-ID: <pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp>
JNTP-Route: nemoweb.net
JNTP-DataType: Article
Subject: Re: The splendor of true
References: <iiAmPhnb6ZsFWL9UK83hB6x5ybc@jntp> <vqnl51$1i82g$1@dont-email.me> <gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp>
Newsgroups: sci.math
JNTP-HashClient: vo0R1S2op-qt45dvWTQtraLx5sc
JNTP-ThreadID: sfquvv9pepiWDvHCgcj9IoaNyew
JNTP-ReferenceUserID: 4@nemoweb.net
JNTP-Uri: https://www.nemoweb.net/?DataID=pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp
User-Agent: Nemo/1.0
JNTP-OriginServer: nemoweb.net
Date: Mon, 10 Mar 25 23:19:29 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Injection-Info: nemoweb.net; posting-host="88d8e3fc77776d6bcc186faa1aefc7625bd3eae9"; logging-data="2025-03-10T23:19:29Z/9237519"; posting-account="190@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: Python <jp@python.invalid>
Bytes: 2108
Lines: 30

Le 11/03/2025 à 00:09, Richard Hachel a écrit :
> Le 10/03/2025 à 22:21, "Chris M. Thomasson" a écrit :
>> On 3/8/2025 3:54 PM, Richard Hachel wrote:
> 
> 
> <http://nemoweb.net/jntp?gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp/Data.Media:1>
> 
> What is this?
> 
> R.H. 

In C (complex numbers as defined in math i.e. R[X]/(X^2 + 1)) consider the 
sequence :
(z_n and c are complex numbers)

z_0 = 0 + 0i
z_(n+1) = (z_n)^2 + c

if (z_(n)) does not go to infinity then c is a member of Mandelbrot's set
(it is also the set of c for which another set (Julia's set J_c) is 
connexe)

You can explore it there on line (zoom on the border, it is quite 
fascinating) :

https://mandel.gart.nz/

There the set itself is the black part, the colors at the border 
represents how fast the sequence diverges.