| Deutsch English Français Italiano |
|
<pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.roellig-ltd.de!open-news-network.org!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp> JNTP-Route: nemoweb.net JNTP-DataType: Article Subject: Re: The splendor of true References: <iiAmPhnb6ZsFWL9UK83hB6x5ybc@jntp> <vqnl51$1i82g$1@dont-email.me> <gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp> Newsgroups: sci.math JNTP-HashClient: vo0R1S2op-qt45dvWTQtraLx5sc JNTP-ThreadID: sfquvv9pepiWDvHCgcj9IoaNyew JNTP-ReferenceUserID: 4@nemoweb.net JNTP-Uri: https://www.nemoweb.net/?DataID=pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp User-Agent: Nemo/1.0 JNTP-OriginServer: nemoweb.net Date: Mon, 10 Mar 25 23:19:29 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0 Injection-Info: nemoweb.net; posting-host="88d8e3fc77776d6bcc186faa1aefc7625bd3eae9"; logging-data="2025-03-10T23:19:29Z/9237519"; posting-account="190@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: Python <jp@python.invalid> Bytes: 2108 Lines: 30 Le 11/03/2025 à 00:09, Richard Hachel a écrit : > Le 10/03/2025 à 22:21, "Chris M. Thomasson" a écrit : >> On 3/8/2025 3:54 PM, Richard Hachel wrote: > > > <http://nemoweb.net/jntp?gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp/Data.Media:1> > > What is this? > > R.H. In C (complex numbers as defined in math i.e. R[X]/(X^2 + 1)) consider the sequence : (z_n and c are complex numbers) z_0 = 0 + 0i z_(n+1) = (z_n)^2 + c if (z_(n)) does not go to infinity then c is a member of Mandelbrot's set (it is also the set of c for which another set (Julia's set J_c) is connexe) You can explore it there on line (zoom on the border, it is quite fascinating) : https://mandel.gart.nz/ There the set itself is the black part, the colors at the border represents how fast the sequence diverges.