Deutsch English Français Italiano |
<s9uKDWzlXBaduNJ4LOkPWeJ6k7U@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!3.eu.feeder.erje.net!feeder.erje.net!fdn.fr!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <s9uKDWzlXBaduNJ4LOkPWeJ6k7U@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: There is a first/smallest integer (in =?UTF-8?Q?M=C3=BCckenland=29?= References: <v78aei$1qhrg$2@dont-email.me> <v78u39$1ubd0$1@dont-email.me> <Dt7UjtVV_Fl-l1XYEJYeiucc7v8@jntp> <41d2e5d4-8cb6-4edb-ae2c-77c0b64a6831@att.net> <v7aair$29gcl$1@dont-email.me> <dae176b5-51d9-48cc-83ac-5b2dfe78c58c@att.net> <_3PdRlVY_XR6s8COuF91xa6k7Hw@jntp> <cf85fc74-9974-4f6b-b5ab-600e25b19b8d@att.net> <_yU-Ua_pBHYXLfdfOPeH-udJXw8@jntp> <88398fce-9050-464f-a4ca-62944a3e52e4@att.net> Newsgroups: sci.math JNTP-HashClient: 83mJ5hQOeTLdt9uUBdQlIM5tZ0Q JNTP-ThreadID: v78aei$1qhrg$2@dont-email.me JNTP-Uri: http://news2.nemoweb.net/?DataID=s9uKDWzlXBaduNJ4LOkPWeJ6k7U@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Fri, 19 Jul 24 14:03:48 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="82b75c1d0a83e677ff646b52485f72f8b23749df"; logging-data="2024-07-19T14:03:48Z/8955101"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2540 Lines: 38 Le 18/07/2024 à 23:42, Jim Burns a écrit : > On 7/18/2024 4:55 PM, WM wrote: >> But if >> for all points x > 0 >> there are ℵo smaller unit fractions, >> then >> for the interval (0, oo) >> there are ℵo smaller unit fractions. > > No. Like Bob. No reason to continue. > For each point x > 0 > there are > step.down non.⅟⌈⅟x⌉.step.up well.ordered.by.> > unit.fractions in (0,x] which, > because > step.down non.⅟⌈⅟x⌉.step.up well.ordered.by.> > are ℵ₀.many. Of all unit fractions left of any x > 0, ℵ₀ are the same, finitely many are different. > > No unit fractions are smaller than (0,∞) Right. That means Fritsches x are not all x. > >> Or is there a point in (0, oo) which >> is not an x > 0? > > No, but > there is no point x in (0,∞) such that irrelevant. All x > 0 are there and nothing else. Regards, WM