Deutsch English Français Italiano |
<tR3Y2x4dEEPzAEOhowr43HKCN9M@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!3.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <tR3Y2x4dEEPzAEOhowr43HKCN9M@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: Does the number of nines =?UTF-8?Q?increase=3F?= References: <tJf9P9dALSN4l2XH5vdqPbXSA7o@jntp> <AorII1f7PWb6eMa2Lfl7MFs-xLU@jntp> <72984017b5af15267bdcd281564efdd028083003@i2pn2.org> <_Vg1U_Mf84asRBWfLUWkNE6XpV0@jntp> <v6hkne$11b37$1@dont-email.me> <RCnpt32kvzrJgtK_QaVo-sVsjtQ@jntp> <df337879fde82f45131e01f099671782554dd11e@i2pn2.org> <v6jhqp$1dbi9$2@dont-email.me> <QIFomx_kFHOP21iy8SnBBbOZzjE@jntp> <v6jqpc$1evbj$1@dont-email.me> Newsgroups: sci.math JNTP-HashClient: bUddAjQ4Q8a_H_BjGv_261fgmO4 JNTP-ThreadID: 0JbXgoRqYUfKvvWhEBWZVJgnda4 JNTP-Uri: http://news2.nemoweb.net/?DataID=tR3Y2x4dEEPzAEOhowr43HKCN9M@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Wed, 10 Jul 24 15:44:37 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="25d5a506365fc8262443ce1bd287e5d0233c1bef"; logging-data="2024-07-10T15:44:37Z/8941955"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2712 Lines: 38 Le 09/07/2024 à 19:07, Moebius a écrit : > Am 09.07.2024 um 18:53 schrieb WM: > >> Either there is a first unit fraction or this is not the case. > > It is not the case. Then there are more first unit fractions. > > Hint: If s is a unit fraction, 1/(1/s + 1) is a smaller one. This is in contradiction with mathematics: Only one unit fraction at one point. > >> If it is not the case, then NUF(x) increases by more than 1, >> say by X, at that x where it is leaving 0. > > 1. NUF does not "increase" but "jump". But not by more than 1 at any x. > > 2. "That x where it is leaving 0" does not exist. :-) Wrong worship of matheology. In mathematics NUF(x) is leaving x not without a unit fraction. > > Hint: NUF(x) = 0 for all x e IR, x <= 0 and NUF(x) = aleph_0 for all x e > IR, x > 0. Wrong worship of matheology. > >> But then there must exist an x <bla bla bla> > > Hint: For all x e IR, x > 0 there are infinitely many unit fractions > which are smaller than x. Not for x between these unit fractions. Regards, WM