Deutsch   English   Français   Italiano  
<u5tkg5$1l1ja$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Python <python@invalid.org>
Newsgroups: fr.sci.physique
Subject: =?UTF-8?Q?Re=3a_De_la_relativit=c3=a9_des_distances?=
Date: Fri, 9 Jun 2023 00:25:09 +0200
Organization: A noiseless patient Spider
Lines: 19
Message-ID: <u5tkg5$1l1ja$1@dont-email.me>
References: <stDECQg9WR9Evb6RUW3-0FFOlek@jntp>
 <7e7733d3-20c2-41f9-aa12-254ff48844f4n@googlegroups.com>
 <u5sl37$1h802$1@dont-email.me>
 <cf7dbee4-6d32-4f0e-8b75-081cadfba0a7n@googlegroups.com>
 <7NBboA_mGQPKzsXkP5IyvxaOCoo@jntp>
 <4d5decfe-63c3-4423-9a31-5e6c33eac43fn@googlegroups.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 8 Jun 2023 22:25:09 -0000 (UTC)
Injection-Info: dont-email.me; posting-host="e27ba012efbf0ddfe066bddf92a44bcf";
	logging-data="1738346"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/KK5uhd8DJHgNxTe3VaeQS"
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:102.0) Gecko/20100101
 Thunderbird/102.3.3
Cancel-Lock: sha1:k1ydd74dzkyoo9axCG6r8c4UIlE=
In-Reply-To: <4d5decfe-63c3-4423-9a31-5e6c33eac43fn@googlegroups.com>
Content-Language: en-US, fr
Bytes: 2202

Le 08/06/2023 à 18:31, Richard Verret a écrit :
> Le jeudi 8 juin 2023 à 18:15:44 UTC+2, Richard Hachel a écrit :
>> Moi, je veux bien te répondre, je peux répondre sur TOUT, mais je ne
>> comprends pas ta question :
>> "éclairer sur l’équation de la transformation de Lorentz relative au
>> temps t’ = f(x)."
> Cette équation est, en fait, une fonction de plusieurs variables t’ = f(t, v, x).
> Il est question de deux référentiels R et wR’. Que désigne t, t’ ? Et pourquoi t’ est-il fonction de x, une coordonnée de R ?
> Les spécialistes de la relativité doivent pouvoir me répondre.

c'est assez effrayant. Vous ne comprenez *pas du tout* ce qu'est
une transformation entre systèmes de coordonnées.

examinez simplement une rotation dans le plan, x' dépend de x et y
et y' dépend de x et y aussi.

c'est pareil.