Deutsch English Français Italiano |
<uKJOXMapKFxdskpv2IaHLO9mkd0@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!proxad.net!feeder1-2.proxad.net!fdn.fr!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <uKJOXMapKFxdskpv2IaHLO9mkd0@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: Contradiction of bijections as a measure for infinite sets References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uuc9cr$3j5g3$1@i2pn2.org> <nVHZfuyg7O6FHCXZXigDgC2s8EU@jntp> <uufegr$3p7r0$1@i2pn2.org> <XNMbPeWA6KdZNjVAaRrj0SXXhxo@jntp> <e392b515-c9ad-4e57-8edd-ceedc8b67bea@att.net> <XXPbPRsdhaYaKB7KZdQr_ljWUOk@jntp> <uujudu$115r$1@dont-email.me> <n4HHLvESP6YbxyE8Pjituhs1tXA@jntp> <uuosft$1cq33$1@dont-email.me> Newsgroups: sci.math JNTP-HashClient: LP_h_yVCrHI7Itqm6wUVclhgQv4 JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=uKJOXMapKFxdskpv2IaHLO9mkd0@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Sat, 06 Apr 24 13:26:23 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="bb35312969355368e308a66234570595632ccd80"; logging-data="2024-04-06T13:26:23Z/8807511"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2232 Lines: 17 Le 05/04/2024 à 12:57, FromTheRafters a écrit : > WM explained on 4/4/2024 : >> Explain why first bijecting n and n/1 should destroy an existing bijection! > > You still seem to think that sets change. If you mean 'n' is an element > of the naturals then of course N bijects with the naturals as embedded > in Q. Of course. But if someone doubts it, I could directly map the naturals n/1 to the fractions with the result that there is no bijection. > Also, the complement of the naturals over one in Q is the same > size as the proper subset you created. No, that is disproved by the remaining Os. Regards, WM