Deutsch English Français Italiano |
<ut2csb$2fe4u$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: comp.lang.c,comp.arch Subject: Re: Radians Or Degrees? Date: Fri, 15 Mar 2024 13:59:52 -0700 Organization: A noiseless patient Spider Lines: 18 Message-ID: <ut2csb$2fe4u$1@dont-email.me> References: <ur5trn$3d64t$1@dont-email.me> <ur5v05$3ccut$1@dont-email.me> <20240222015920.00000260@yahoo.com> <ur69j9$3ftgj$3@dont-email.me> <ur86eg$1aip$1@dont-email.me> <ur88e4$1rr1$5@dont-email.me> <ur8a2p$2446$1@dont-email.me> <ur8ctk$2vbd$2@dont-email.me> <20240222233838.0000572f@yahoo.com> <3b2e86cdb0ee8785b4405ab10871c5ca@www.novabbs.org> <ur8nud$4n1r$1@dont-email.me> <936a852388e7e4414cb7e529da7095ea@www.novabbs.org> <ur9qtp$fnm9$1@dont-email.me> <20240314112655.000011f8@yahoo.com> <ut17ji$27n6b$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Fri, 15 Mar 2024 20:59:55 -0000 (UTC) Injection-Info: dont-email.me; posting-host="ed612d4ce44e1af227fa0b762e20f588"; logging-data="2603166"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18ymBf/rmbqWpB55yQp/MHksGfZwONiBJg=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:dUQCwn2F4T7q903f4g4AFPTr+8Q= In-Reply-To: <ut17ji$27n6b$1@dont-email.me> Content-Language: en-US Bytes: 2083 On 3/15/2024 3:23 AM, Terje Mathisen wrote: > Michael, I for the main part agree with you here, i.e. calculating > sin(x) with x larger than 2^53 or so, is almost certainly stupid. [...] ;^D tooooooo big. :^) Now, wrt the results, arbitrary precision for trig is useful, in say... Deep fractal zooms... Zooming in really deep in say something like this, well the precision of trig can become an issue: https://paulbourke.net/fractals/multijulia/ Trig would be used, say, in rectangular to-from polar forms wrt getting the n-ary roots of a complex number?