Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <uvc449$2hm3c$2@dont-email.me>
Deutsch   English   Français   Italiano  
<uvc449$2hm3c$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: how
Date: Fri, 12 Apr 2024 13:04:24 -0700
Organization: A noiseless patient Spider
Lines: 20
Message-ID: <uvc449$2hm3c$2@dont-email.me>
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uv1u89$gg07$1@i2pn2.org>
 <ekdJ-XDKSkYPaHoPLf34i3GSGUs@jntp> <uv4hkt$jm4k$1@i2pn2.org>
 <beJ729k0Ep63Kb_qzgKz-TvZP80@jntp> <uv7609$n6lm$2@i2pn2.org>
 <0i01kKYhCcWwtJURV35AV3Oy16s@jntp>
 <44eaef1b-35be-4b50-900b-52b010ba9aa0@att.net>
 <_g9BcdiKQ1epFrcvM4FSF2rZkN8@jntp> <uvbeiq$2cvvd$1@dont-email.me>
 <lprzVpdRcfIy-L_JSquAz9BT8hI@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 12 Apr 2024 22:04:25 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="580845cba5e816a4d21fffa29c63ed62";
	logging-data="2676844"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/4IPVJB6Qd4u/9IifwlAkAg2zMDwsrb64="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:4K4SusZP3zquOTdvuKHjRQk9Ruk=
Content-Language: en-US
In-Reply-To: <lprzVpdRcfIy-L_JSquAz9BT8hI@jntp>
Bytes: 1954

On 4/12/2024 7:32 AM, WM wrote:
> Le 12/04/2024 à 15:56, Tom Bola a écrit :
>> WM schrieb:
> 
>>> Consider the set {1, 2, 3, ..., ω} and multiply every element by 2 
>>> with the result {2, 4, 6, ..., ω*2}. What elements fall between ω and 
>>> ω*2? 
>>
>> {w+1, w+2, w+3, ...,} 
> 
> No, all elements emergeing from doubling have larger distances than 1.
>>
>>> What size has the interval between N*2 and ω*2? 
>>
>> N*2 is not a number, so there is no interval between it and w*2
> 
> N*2 is a set having elements but not including w*2. So there is a distance.

Huh? N has all of them.