Deutsch English Français Italiano |
<uvke5f$i3du$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Tom Bola <Tom@bolamail.etc> Newsgroups: sci.math Subject: Re: how Date: Tue, 16 Apr 2024 01:44:46 +0200 Organization: A noiseless patient Spider Lines: 49 Message-ID: <uvke5f$i3du$1@dont-email.me> References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uv7609$n6lm$2@i2pn2.org> <0i01kKYhCcWwtJURV35AV3Oy16s@jntp> <44eaef1b-35be-4b50-900b-52b010ba9aa0@att.net> <_g9BcdiKQ1epFrcvM4FSF2rZkN8@jntp> <f4890eb5-e8df-4d98-a1ba-98c40f516df5@att.net> <HowGC2OIbH3GwJcRQBgR51F0vzM@jntp> <29c99292-805f-4f34-a1c8-ce1c7cd82f75@att.net> <WUdrtFzAGxMxA0R9q5J6yKSUZZk@jntp> <uvhdlb$3qhdi$1@dont-email.me> <yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp> <uvj8dn$9pp1$1@dont-email.me> <uvjuoq$etvf$1@dont-email.me> <uvk1pa$fjol$1@dont-email.me> <uvkamq$hf1v$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: 8bit Injection-Date: Tue, 16 Apr 2024 01:44:48 +0200 (CEST) Injection-Info: dont-email.me; posting-host="90caa28ece24e7910630b90b4873213f"; logging-data="593342"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+iwm1GtHnMHCeFgopd6dPyy1LifhqB58w=" User-Agent: 40tude_Dialog/2.0.15.1 Cancel-Lock: sha1:vGDDV54VJOI9ZWInRmipKgc4N2E= Bytes: 2832 Chris M. Thomasson schrieb: > On 4/15/2024 1:13 PM, Tom Bola wrote: >> Chris M. Thomasson drivels: >> >>> On 4/15/2024 6:00 AM, Tom Bola wrote: >>>> WM drivels: >>>> >>>>> Le 14/04/2024 à 22:17, Tom Bola a écrit : >>>>>> WM schrieb: >>>>>> >>>>>>> Le 13/04/2024 à 21:16, Jim Burns a écrit : >>>>>>>> On 4/13/2024 8:35 AM, WM wrote: >>>>>>> >>>>>>>>> What elements of {1, 2, 3, ..., ω}*2 >>>>>>>>> fall between ω and ω*2? >>>>>>>>> Their distances must be 2. >>>>>>>> >>>>>>>> Why 2 ? >>>>>>> >>>>>>> Doubling of ordinals >>>>>> >>>>>> The smallest ordinals behind all n in IN possible >>>>>> would be the w's in something like >>>>>> >>>>>> {0, 1, 2, 3, ..., w, w+1, w+2, w+3, ... w+w} >>>>>> >>>>>> which, under f(n)=n*2, has the image >>>>>> >>>>>> {0, 2, 4, 6, ..., w*2, w*2+2, w*2+4, w*2+4, ... w*2+w*2} >>>>> >>>>> Right! But ω remains like 6 remains. >>>> >>>> No - w in the domain is related by the function to w*2, >>>> same as every other element in the domain: >>>> >>>> 0, 1, 2, 3, ..., w, w+1, w+2, w+3, ... w+w >>>> | | | | ||| | | | | | >>>> 0, 2, 4, 6, ..., w*2, w*2+2, w*2+4, w*2+6, ... w*2+w*2 >>>> >>>> Anyhow - your "doubling" idea is childish and idiotic bullshit, as always. >>> >>> Ditto! >> >> ROFL - I haven't got any "doubling" idea for a list of the IN u {w}. > > Where was I disagreeing with you? Sorry then, excuse my English, please...