Deutsch English Français Italiano |
<uvuirk$362p7$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder6.news.weretis.net!feeder8.news.weretis.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: how Date: Fri, 19 Apr 2024 13:06:13 -0700 Organization: A noiseless patient Spider Lines: 18 Message-ID: <uvuirk$362p7$2@dont-email.me> References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <afWdnQSazLMPNIP7nZ2dnZfqn_udnZ2d@brightview.co.uk> <xtCcB8eTIiLLKhTUoHKqffY9Xgk@jntp> <uvmklk$145fs$1@dont-email.me> <KDvld5V8nkuMQizbRLOiDVHwY6M@jntp> <uvp8f9$1p75i$1@dont-email.me> <JIsBgBi5Wu8Ns_hoOaJCIIvKSYU@jntp> <uvplr1$1doq2$3@i2pn2.org> <Ij_qGrKst7rqCTjRqdGn4LsBBQs@jntp> <uvs779$1h01f$3@i2pn2.org> <ykPvnRvlUAhcD0Wfb1e9czB3_zg@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 19 Apr 2024 22:06:13 +0200 (CEST) Injection-Info: dont-email.me; posting-host="41741d36edd758098a94af7ff9f8ee84"; logging-data="3345191"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/r8KHB7paXZWlDOikZ05K3l6P++20wix8=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:YLBoC3qeADsYb7+zkkgMSMN3Sbg= In-Reply-To: <ykPvnRvlUAhcD0Wfb1e9czB3_zg@jntp> Content-Language: en-US Bytes: 2113 On 4/19/2024 8:20 AM, WM wrote: > Le 19/04/2024 à 00:35, Richard Damon a écrit : >> On 4/18/24 11:05 AM, WM wrote: >>> ω is amidst the interval (0, ω2) because in the image there are as >>> many ordinals in (ω, ω2) as in (0, ω). >> >> But all those ordinals are transfinite ordinals, and none are the >> value of double a finite Natural Number. > > You are in error. Counting goes like this: 1, 2, 3, ..., ω, ω+1, ω+2, .. > You simply pass ω although no known natural number k+1 will reach ω. But > by multiplication, which goes faster, you cannot pass ω? Huh? any_natural_number * 2 = another_natural_number These natural numbers are already in the set of all natural numbers.