Deutsch   English   Français   Italiano  
<v0994t$1rpmd$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!npeer.as286.net!npeer-ng0.as286.net!3.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Tom Bola <Tom@bolamail.etc>
Newsgroups: sci.math
Subject: Re: how
Date: Tue, 23 Apr 2024 23:27:57 +0200
Organization: A noiseless patient Spider
Lines: 25
Message-ID: <v0994t$1rpmd$1@dont-email.me>
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <5LBLnYAjUgXgTK4Y5LH6e8fCibw@jntp> <uvuiof$362p7$1@dont-email.me> <uvulr4$36plc$1@dont-email.me> <stohwU8_tXR1lFqmbIJKGgksu_Q@jntp> <v00upr$3pm7b$1@dont-email.me> <ZBi4zgLNiT37UPa-AXe7ZNaUYVk@jntp> <v03djc$co28$1@dont-email.me> <03cqX1wewd7499TOiNVrh-ShszA@jntp> <v06q3h$1uk1v$2@i2pn2.org> <3AfbXk3CYztgzRI54emq6F40OJ8@jntp> <v08vnu$1pb8v$1@dont-email.me> <v098u2$1rm51$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 23 Apr 2024 23:27:57 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="8c06997dcf679fcd79b921c56dee5f62";
	logging-data="1959629"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+5FpgR8iuFaGp6Gbqdd7MPp2K2G51mbjs="
User-Agent: 40tude_Dialog/2.0.15.1
Cancel-Lock: sha1:iYVQOOtNw050TJlQFwzsMYf3S9w=
Bytes: 2064

Chris M. Thomasson schrieb:

> On 4/23/2024 11:47 AM, Tom Bola wrote:
>> WM schrieb:
>> 
>>> Le 23/04/2024 à 00:58, Richard Damon a écrit :
>>>
>>>> Yes, there is sort of a gap below ω as you can only get to ω via a
>>>> "hyper" step, not a normal step, like from 1 to 2.
>>>
>>> How many normal steps covers a hyper step?
>> 
>> It's the same with dimensions - one cannot "cover" length with width.
> 
> 
> A hyper step wrt the reals can be as simple as 0 + 1 because there is an 
> infinity between 0 and 1?
 
Sure! But that case is about ordinal numbers... 
   
>>>> There are no Ordinals in that gap,
>>>
>>> What is in that gap?
>> 
>> The same that is between each pair of n and n+1 in IN: nothing.