Deutsch   English   Français   Italiano  
<v09pa9$222fd$5@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder6.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: Richard Damon <richard@damon-family.org>
Newsgroups: sci.math
Subject: Re: how
Date: Tue, 23 Apr 2024 22:03:53 -0400
Organization: i2pn2 (i2pn.org)
Message-ID: <v09pa9$222fd$5@i2pn2.org>
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uvuuuk$1kece$3@i2pn2.org>
 <wj6ndzp5J9qndM6Ni-9XZdK6jyw@jntp> <v00skm$1m94c$4@i2pn2.org>
 <x_NkVA7tC4PbuDHgWd_lI0r3UuA@jntp> <v012ji$1m94d$4@i2pn2.org>
 <MhMKLiWFUW2BGqeHumLSqLhBo1I@jntp> <v06q93$1uk1v$3@i2pn2.org>
 <Fr-J6IVJwWMeVOUV5nUftUgP93w@jntp> <v0934d$1q4ch$1@dont-email.me>
 <CQmyzwX2aN_N8Dqs9VfuA2QOQm0@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 24 Apr 2024 02:03:53 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="2165229"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg";
User-Agent: Mozilla Thunderbird
X-Spam-Checker-Version: SpamAssassin 4.0.0
Content-Language: en-US
In-Reply-To: <CQmyzwX2aN_N8Dqs9VfuA2QOQm0@jntp>
Bytes: 2250
Lines: 34

On 4/23/24 3:51 PM, WM wrote:
> Le 23/04/2024 à 21:45, Tom Bola a écrit :
>> WM schrieb:
>>
>>> Le 23/04/2024 à 01:01, Richard Damon a écrit :
>>>> On 4/22/24 10:15 AM, WM wrote:
>>>
>>>>> The results cannot be compressed to the interval (0, ω) of the set 
>>>>> { 1, 2, 3, ...}. This shows that new numbers are generated by 
>>>>> multiplication.
>>>>>
>>>> Of course they can be compressed into the interval (0, ω), as every 
>>>> finite number n < ω, when doubled results in a finite number 2n 
>>>> which is also < ω.
>>>
>>> Try to map the closed interval [0, ω]*2 = [0, ω*2].
>>
>> f = (0, 0),
>> (1, 2),
>> (2, 4),
>> (3, 6),
>> (..., ...),
>> (w, w*2)
> 
> Indeed. When n reaches ω, 2n reaches ω2.
> 
> Regards, WM

But n, the finite number, never reaches ω.

ω isn't just some unimaginably big number, it is a value beyond 
finiteness, a transfinite value, and infinity.

Of course, if you logic tries to make that transfinite value finite 
because that is all it can handle, your system just blows up in your face.