Deutsch English Français Italiano |
<v0dp8c$31vd9$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder8.news.weretis.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: olcott <polcott333@gmail.com> Newsgroups: sci.logic Subject: Re: Undecidability based on epistemological antinomies V2 --Mendelson-- Date: Thu, 25 Apr 2024 09:27:23 -0500 Organization: A noiseless patient Spider Lines: 30 Message-ID: <v0dp8c$31vd9$1@dont-email.me> References: <uvq0sg$21m7a$1@dont-email.me> <uvq359$1doq3$4@i2pn2.org> <uvrbvs$2acf7$1@dont-email.me> <uvs70t$1h01f$1@i2pn2.org> <uvsgcl$2i80k$1@dont-email.me> <uvsj4v$1h01e$1@i2pn2.org> <uvsknc$2mq5c$1@dont-email.me> <uvvrj6$3i152$1@dont-email.me> <v00r07$3oqra$1@dont-email.me> <v02ggt$6org$1@dont-email.me> <v03866$bitp$1@dont-email.me> <v056us$rmqi$1@dont-email.me> <v08i2i$1m5hp$2@dont-email.me> <v0akj8$28ghd$1@dont-email.me> <v0bada$2defp$2@dont-email.me> <v0d42v$2tclm$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 25 Apr 2024 16:27:25 +0200 (CEST) Injection-Info: dont-email.me; posting-host="582e37b572b2a71d2b4cb5a79c660258"; logging-data="3210665"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19hOMa5EmuKHY47L8rFPIH3" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:PQSW94Vkl8nIcUjoAqeFnUnZMgs= Content-Language: en-US In-Reply-To: <v0d42v$2tclm$1@dont-email.me> Bytes: 2722 On 4/25/2024 3:26 AM, Mikko wrote: > epistemological antinomy It <is> part of the current (thus incorrect) definition of undecidability because expressions of language that are neither true nor false (epistemological antinomies) do prove undecidability even though these expressions are not truth bearers thus not propositions. Bivalent formal systems of logic only operate on propositions thus any expression that is not a proposition is a type mismatch error. A proposition is a central concept in the philosophy of language, semantics, logic, and related fields, often characterized as the primary bearer of truth or falsity. https://en.wikipedia.org/wiki/Proposition An undecidable sentence of a theory K is a closed wf ℬ of K such that neither ℬ nor ℬ is a theorem of K, that is, such that not-⊢K ℬ and not-⊢K ℬ. (Mendelson: 2015:208) AKA Undecidable(K, ℬ) ≡ ∃ℬ ∈ K ((K ⊬ ℬ) ∧ (K ⊬ ℬ)) Mendelson, Elliott 2015. Introduction to Mathematical Logic sixth edition CRC Press Taylor & Francis Group Boca Raton, FL -- Copyright 2024 Olcott "Talent hits a target no one else can hit; Genius hits a target no one else can see." Arthur Schopenhauer