Deutsch English Français Italiano |
<v23v43$1bqgd$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: immibis <news@immibis.com> Newsgroups: sci.logic,comp.theory Subject: Re: True on the basis of meaning --- Good job Richard ! ---Socratic method Date: Thu, 16 May 2024 05:38:43 +0200 Organization: A noiseless patient Spider Lines: 42 Message-ID: <v23v43$1bqgd$1@dont-email.me> References: <v1mljr$1q5ee$4@dont-email.me> <v1mnuj$lbo5$12@i2pn2.org> <v1mp1l$1qr5e$4@dont-email.me> <v1mpsh$lbo4$6@i2pn2.org> <v1ms2o$1rkit$1@dont-email.me> <v1prtb$2jtsh$1@dont-email.me> <v1qjb1$2ouob$2@dont-email.me> <v1qnfv$2q0t7$1@dont-email.me> <v1qtnk$2rdui$2@dont-email.me> <v1qvku$qvg3$5@i2pn2.org> <v1r0fg$2rva6$1@dont-email.me> <v1r1ci$qvg3$6@i2pn2.org> <v1r276$2shtf$1@dont-email.me> <v1r932$qvg3$8@i2pn2.org> <v1rdr5$30gkq$1@dont-email.me> <v1rggn$qvg3$11@i2pn2.org> <v1rhff$31ege$1@dont-email.me> <v1rhqr$qvg2$3@i2pn2.org> <v1rj05$31n8h$2@dont-email.me> <v1rkt4$qvg2$4@i2pn2.org> <v1rlj7$324ln$2@dont-email.me> <v1rn85$qvg3$12@i2pn2.org> <v1s25g$38fdl$1@dont-email.me> <v1ssv3$qvg3$15@i2pn2.org> <v1ta68$3hc9t$1@dont-email.me> <v1ub9v$v37v$1@i2pn2.org> <v1ugp1$3tnr6$1@dont-email.me> <v1uie1$v37v$16@i2pn2.org> <v23kf1$15oml$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 16 May 2024 05:38:44 +0200 (CEST) Injection-Info: dont-email.me; posting-host="317f8aa90b088dc2b92662958d53c3ce"; logging-data="1436173"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX188J2AMWgKUaCcgzdlPy1LE" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:Hb8Ct+O+MWeU5UDfFq2LOwitBjk= Content-Language: en-US In-Reply-To: <v23kf1$15oml$1@dont-email.me> Bytes: 3069 On 16/05/24 02:36, olcott wrote: > On 5/13/2024 9:31 PM, Richard Damon wrote: >> On 5/13/24 10:03 PM, olcott wrote: >>> >>> Can a sequence of true preserving operations applied to expressions >>> that are stipulated to be true derive p? > > *You keep forgetting that you said this* >> No, so True(L, p) is false >> and thus ~True(L, p) is true. >> >>> >>> Can a sequence of true preserving operations applied to expressions >>> that are stipulated to be true derive ~p? >> > > *You keep forgetting that you said this* >> No, so False(L, p) is false, > > So True(L, x) always returns True or False for all > inputs and False(L, x) defined as True(L,~x) > always returns True or False for all inputs. > > TruthBearer(L, x) ≡ (True(L,x) ∨ False(L,x)) > > *To make this easier to understand* > True(English, "a fish") is false > False(English, "a fish") is false > TruthBearer(English, "a fish") is false > > Thus "a fish" is rejected as a type mismatch error > for any system of bivalent logic, yet the predicates > still answer correctly. > > > > What is True(Logic,"¬True(English,'a fish')")? What is X=True(Logic,"¬True(Logic, X)")?