Deutsch English Français Italiano |
<v26378$1q819$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: how Date: Fri, 17 May 2024 01:00:54 +0200 Organization: A noiseless patient Spider Lines: 41 Message-ID: <v26378$1q819$1@dont-email.me> References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <v1btru$9f72$1@i2pn2.org> <NpFi3oiIKwdUHLPHsD0PJNdq36o@jntp> <v1iprg$nh1j$2@dont-email.me> <MMgDMrziqDTlmJ27wRndpDTtC7M@jntp> <v1lai5$1d1bp$3@dont-email.me> <EUn2TQXz8dX7hAlwWuLfN5Y_duw@jntp> <v1u70d$3o5i6$1@dont-email.me> <TZvV2EtNY394LRPsxQynZs6a68M@jntp> <v1vpav$6g8p$2@dont-email.me> <0rlKTzl7_uYwvqKe84l-5MJZAoE@jntp> <daccd066-734a-4138-a64a-e0766e69eadf@att.net> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 17 May 2024 01:00:57 +0200 (CEST) Injection-Info: dont-email.me; posting-host="90b5f667d8edd8fa9a675aaabf7dcb32"; logging-data="1908777"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX192tQMtocZgDOJ8rfKxfThx" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:frisw+zwrk+QFXHL4qTjDP9xMb4= Content-Language: de-DE In-Reply-To: <daccd066-734a-4138-a64a-e0766e69eadf@att.net> Bytes: 2585 Am 16.05.2024 um 20:56 schrieb Jim Burns: > On 5/15/2024 9:12 AM, WM wrote: >> Le 14/05/2024 à 15:35, Moebius a écrit : >>> Am 14.05.2024 um 13:13 schrieb WM: > >>>> Where can the first unit fractions exist >>>> on the real line >>> >>> Nowhere. >>> Since there is no such unit fraction, >>> it can't be anywhere. >> >> Every subset of the real line has >> a first element. > > No. > > | Assume ⅟ℕ∩(0,1] has first element ⅟G > | > | 0 < ½⋅⅟G < ⅟G < 2⋅⅟G > | There IS a unit.fraction ⅟k < 2⋅⅟G > | There is NOT a unit.fraction < ½⋅⅟G > | > | ⅟k < 2⋅⅟G exists > | (⅟k)/4 < (2⋅⅟G)/4 > | ⅟(4⋅k) < ½⋅⅟G > | There IS a unit.fraction ⅟(4⋅k) < ½⋅⅟G > | Contradiction. > > Therefore, > ⅟ℕ∩(0,1] does NOT have a first element. How about? Let S = {x e IR : 0 < x}. Then S is a (nomempty) subset of IR. Assume there is a first/smallest element in S. Let r be this element. Then r e IR and 0 < r and hence r/2 e IR and 0 < r/2. Hence r/2 in S. But r/2 < r. Contradiction! Hence S does not have a first/smallest Element. This disproves WM's claim. [ ] It seems that WM likes to assert false statements.