Deutsch   English   Français   Italiano  
<v6f8aa$hfgv$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Does the number of nines increase?
Date: Mon, 8 Jul 2024 01:28:10 +0200
Organization: A noiseless patient Spider
Lines: 32
Message-ID: <v6f8aa$hfgv$2@dont-email.me>
References: <tJf9P9dALSN4l2XH5vdqPbXSA7o@jntp> <v669vp$2pluv$1@dont-email.me>
 <v66kcm$2rgql$1@dont-email.me> <v66u7k$2t154$1@dont-email.me>
 <v66v36$2t7em$1@dont-email.me> <v670bh$2tdhr$1@dont-email.me>
 <v670q1$2tc0j$2@dont-email.me> <v67tgn$35707$2@dont-email.me>
 <v68s9i$3a5u1$1@dont-email.me> <v6et97$f608$5@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Mon, 08 Jul 2024 01:28:10 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="1eaac4514bf48f28daf78a325c39f882";
	logging-data="572959"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+CSRPVKLWIs6u6fbhUR/H+"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:58WpH7JLKSTzRWlc7WSIaaQ88LM=
Content-Language: de-DE
In-Reply-To: <v6et97$f608$5@dont-email.me>
Bytes: 2191

Am 07.07.2024 um 22:19 schrieb Chris M. Thomasson:
> On 7/5/2024 6:26 AM, Moebius wrote:

>> Still, the rational numbers are countable! (Not enough "infinite 
>> infinities embedded in them"!)
> 
> [...] How many embedded infinite infinities are 
> "needed" _before_ it can be deemed uncountable? 

As much as are needed?

> Say between 0 and 1.

Well, the rationals won't do the job, but the reals can.

> There seems to be an infinite number of rationals that can fill in the 
> "gap", so to speak.

Sure, but not enough, though.

> 0 + (1/8 + 1/8 + 1/4 + 1/2) = 1
> 0 + (1/16 + 1/16 + 1/8 + 1/4 + 1/2) = 1
> 0 + (1/16 + 1/16 + 1/8 + 2/3 + 1/3 - 1/4) = 1
> 
> These are all rational, right?

Sure.

One of my professors once tried to express this state of affairs the 
following way: "There are (in a certain sense) much more real numbers 
than rational numbers."