Deutsch English Français Italiano |
<v6ihi1$18sp0$6@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: More complex numbers than reals? Date: Mon, 8 Jul 2024 22:24:15 -0700 Organization: A noiseless patient Spider Lines: 5 Message-ID: <v6ihi1$18sp0$6@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 09 Jul 2024 07:24:17 +0200 (CEST) Injection-Info: dont-email.me; posting-host="ce358e0d0d9664a700ff455d87f9b3cd"; logging-data="1340192"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX184ahfsQ/OIjOTt14BkCjBu32esooanGLQ=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:5uLe+2cbLrt2b3Ad8R+XwWUIf9g= Content-Language: en-US Bytes: 1246 Are there "more" complex numbers than reals? It seems so, every real has its y, or imaginary, component set to zero. Therefore for each real there is an infinity of infinite embedding's for it wrt any real with a non-zero y axis? Fair enough, or really dumb? A little stupid? What do you think?