| Deutsch English Français Italiano |
|
<v6kacc$1ho2l$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: Does the number of nines increase? Date: Tue, 9 Jul 2024 14:34:04 -0700 Organization: A noiseless patient Spider Lines: 16 Message-ID: <v6kacc$1ho2l$1@dont-email.me> References: <tJf9P9dALSN4l2XH5vdqPbXSA7o@jntp> <206ac30e-6ba5-46f2-978e-59182f946547@att.net> <ua_dk69eQeSqktCTQNG3SNIblRg@jntp> <38fbe173-2081-49a4-89d5-d1470f754565@att.net> <hAhJQ7nieohA_6mzxTp_Pm537J8@jntp> <69d5b220-850b-4faa-b9b4-b25cd74d1666@att.net> <iXwHO-pH72dPrRO8fKLu73u-pDc@jntp> <v6etjs$f608$6@dont-email.me> <rOlUS7lI7QcAQJM95Z2fo8X09x0@jntp> <v6etov$f604$2@dont-email.me> <02WQWLab8x41L6XRW0n7Ba0poZ8@jntp> <v6iaf6$18428$1@dont-email.me> <v6j2cm$1bggk$1@dont-email.me> <v6k5fj$1gsq2$2@dont-email.me> <v6k8rg$1hehh$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 09 Jul 2024 23:34:04 +0200 (CEST) Injection-Info: dont-email.me; posting-host="ce358e0d0d9664a700ff455d87f9b3cd"; logging-data="1630293"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18hKolT8e5Vo5PxNG/AJfP8RwyvNEuPNUg=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:WPQLQMluOvi4qjKdOnegpzfADbc= In-Reply-To: <v6k8rg$1hehh$1@dont-email.me> Content-Language: en-US Bytes: 2189 On 7/9/2024 2:07 PM, Moebius wrote: > Am 09.07.2024 um 22:10 schrieb Chris M. Thomasson: >> On 7/9/2024 3:11 AM, FromTheRafters wrote: > >> Does that mean there are as many rationals as there are reals? > > I already told you that: The set of rational numbers is countable > infinite while the set of real numbers is _uncountable_. > > Again: One of my math professors once tried to express this state of > affairs the following way: "There are (in a certain sense) much more > real numbers than rational numbers." Strange that any real can be represented by a rational up to infinite precision...