Deutsch   English   Français   Italiano  
<v6kacc$1ho2l$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!feeds.phibee-telecom.net!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: Does the number of nines increase?
Date: Tue, 9 Jul 2024 14:34:04 -0700
Organization: A noiseless patient Spider
Lines: 16
Message-ID: <v6kacc$1ho2l$1@dont-email.me>
References: <tJf9P9dALSN4l2XH5vdqPbXSA7o@jntp>
 <206ac30e-6ba5-46f2-978e-59182f946547@att.net>
 <ua_dk69eQeSqktCTQNG3SNIblRg@jntp>
 <38fbe173-2081-49a4-89d5-d1470f754565@att.net>
 <hAhJQ7nieohA_6mzxTp_Pm537J8@jntp>
 <69d5b220-850b-4faa-b9b4-b25cd74d1666@att.net>
 <iXwHO-pH72dPrRO8fKLu73u-pDc@jntp> <v6etjs$f608$6@dont-email.me>
 <rOlUS7lI7QcAQJM95Z2fo8X09x0@jntp> <v6etov$f604$2@dont-email.me>
 <02WQWLab8x41L6XRW0n7Ba0poZ8@jntp> <v6iaf6$18428$1@dont-email.me>
 <v6j2cm$1bggk$1@dont-email.me> <v6k5fj$1gsq2$2@dont-email.me>
 <v6k8rg$1hehh$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Tue, 09 Jul 2024 23:34:04 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="ce358e0d0d9664a700ff455d87f9b3cd";
	logging-data="1630293"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18hKolT8e5Vo5PxNG/AJfP8RwyvNEuPNUg="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:WPQLQMluOvi4qjKdOnegpzfADbc=
In-Reply-To: <v6k8rg$1hehh$1@dont-email.me>
Content-Language: en-US
Bytes: 2189

On 7/9/2024 2:07 PM, Moebius wrote:
> Am 09.07.2024 um 22:10 schrieb Chris M. Thomasson:
>> On 7/9/2024 3:11 AM, FromTheRafters wrote:
> 
>> Does that mean there are as many rationals as there are reals?
> 
> I already told you that: The set of rational numbers is countable 
> infinite while the set of real numbers is _uncountable_.
> 
> Again: One of my math professors once tried to express this state of 
> affairs the following way: "There are (in a certain sense) much more 
> real numbers than rational numbers."

Strange that any real can be represented by a rational up to infinite 
precision...