Deutsch English Français Italiano |
<v6n0mu$22nd0$5@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Does the number of nines increase? Date: Thu, 11 Jul 2024 00:07:26 +0200 Organization: A noiseless patient Spider Lines: 50 Message-ID: <v6n0mu$22nd0$5@dont-email.me> References: <tJf9P9dALSN4l2XH5vdqPbXSA7o@jntp> <206ac30e-6ba5-46f2-978e-59182f946547@att.net> <ua_dk69eQeSqktCTQNG3SNIblRg@jntp> <38fbe173-2081-49a4-89d5-d1470f754565@att.net> <hAhJQ7nieohA_6mzxTp_Pm537J8@jntp> <69d5b220-850b-4faa-b9b4-b25cd74d1666@att.net> <iXwHO-pH72dPrRO8fKLu73u-pDc@jntp> <v6etjs$f608$6@dont-email.me> <rOlUS7lI7QcAQJM95Z2fo8X09x0@jntp> <v6etov$f604$2@dont-email.me> <02WQWLab8x41L6XRW0n7Ba0poZ8@jntp> <v6iaf6$18428$1@dont-email.me> <v6j2cm$1bggk$1@dont-email.me> <v6k5fj$1gsq2$2@dont-email.me> <v6k8rg$1hehh$1@dont-email.me> <v6kacc$1ho2l$1@dont-email.me> <v6kb9f$1hehi$2@dont-email.me> <v6n02q$231iu$3@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 11 Jul 2024 00:07:26 +0200 (CEST) Injection-Info: dont-email.me; posting-host="2b43c9dd34f25362f42493cf5322921d"; logging-data="2186656"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/H9+fbm6E/0pl8qm3Q40dr" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:T08WUVsj1aGTd9O79Ny2WI0vhqI= In-Reply-To: <v6n02q$231iu$3@dont-email.me> Content-Language: de-DE Bytes: 2849 Am 10.07.2024 um 23:56 schrieb Chris M. Thomasson: > On 7/9/2024 2:49 PM, Moebius wrote: >> I guess you might have a _sequence_ of rational numbers in mind, say, >> >> (1, 1.4, 1.41, 1.414, ...). >> >> So we might say that this SEQUENCE represents the real number sqrt(2) >> - in a certain sense. :-P >> >> Actually, its limit is sqrt(2). >> > Well, basically, I was thinking that for any element of: > > (1, 1.4, 1.41, 1.414, ...) > > there is a rational that can represent it. lol. (Sorry!) Which one, if I may ask? :-P > So, it kind of makes my brain want to bleed from time to time, shit happens! Uggg. lol. (Sorry again!) Imho you are "on a good way"! Just take your time, and don't do the Mückenheim! :-) > Taken to infinity, there are rationals that can represent [...] sqrt 2: > > (1, 1.4, 1.41, 1.414, ...) Yeah, but when speaking of a mathematical objekts (in this connection) we (usually) refer to the SEQUENCE (1, 1.4, 1.41, 1.414, ...) Set theory allows to refer to such objekts (sets). > However, there is no single rational that equals sqrt 2. Exactly! :-) A thing even the ancient greeks new! :-P > Humm... Fair enough? Absolutely!