| Deutsch English Français Italiano |
|
<v6pcco$2jl4l$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!npeer.as286.net!npeer-ng0.as286.net!3.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: More complex numbers than reals?
Date: Thu, 11 Jul 2024 12:39:04 -0700
Organization: A noiseless patient Spider
Lines: 37
Message-ID: <v6pcco$2jl4l$2@dont-email.me>
References: <v6ihi1$18sp0$6@dont-email.me> <87msmqrbaq.fsf@bsb.me.uk>
<0dUETcjzkRZSIY0ZGKDH2IRJuYQ@jntp> <87v81epj5v.fsf@bsb.me.uk>
<v6k216$1g6tr$3@dont-email.me> <v6kdkr$1ia75$1@dont-email.me>
<v6nqr2$2as5t$1@dont-email.me> <v6ok34$2f7lr$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Thu, 11 Jul 2024 21:39:05 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="9e4d47bab28597d7f8b7db1375a7cff9";
logging-data="2741397"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/BjN+Xe0KCVdE3KCLBDPILZMjSrjvXx1E="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:kHmisqDSBdq7F7iYzbWIbO7Xe50=
In-Reply-To: <v6ok34$2f7lr$2@dont-email.me>
Content-Language: en-US
Bytes: 2246
On 7/11/2024 5:44 AM, Moebius wrote:
> Am 11.07.2024 um 07:33 schrieb Chris M. Thomasson:
>
>> Is there a countable number of infinite[ly many] primes, just like
>> there is a countable number of infinite[ly many] naturals?
Thanks for the corrections in my wording. :^)
> Yes.
>
> Hint: "In mathematics, a set is countable if either it is finite or it
> can be made in one to one correspondence with the set of natural numbers."
Are the gaps in prime numbers "random" wrt their various length's?
(2, 3) has no gap wrt the naturals, however, (3, 5) does wrt (3, 4, 5).
So a gap list where zero means no gap. { ... } denotes the gap:
_____________
(2, 3) = 0 = (2, { }, 3) // no gap
(3, 5) = 1 = (3, { 4 }, 5)
(5, 7) = 1 = (5, { 6 }, 7)
(7, 11) = 3 = (7, { 8, 9, 10 }, 11)
....
_____________
> https://en.wikipedia.org/wiki/Countable_set
We can index the primes:
[0] = 2
[1] = 3
[2] = 5
[3] = 7
....