Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <v73r76$qh4c$1@dont-email.me>
Deutsch   English   Français   Italiano  
<v73r76$qh4c$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: More complex numbers than reals?
Date: Mon, 15 Jul 2024 20:53:26 +0200
Organization: A noiseless patient Spider
Lines: 18
Message-ID: <v73r76$qh4c$1@dont-email.me>
References: <v6ihi1$18sp0$6@dont-email.me> <87jzhsn4bn.fsf@bsb.me.uk>
 <0_MBIwFUmcbVzDRphAhSXT1Jfqk@jntp> <87sewejgk9.fsf@bsb.me.uk>
 <ONuEZurz8QD0hIPq2Y0YWmtMwpU@jntp> <87h6cskbed.fsf@bsb.me.uk>
 <GfPAXYt6LT0UDGoEl_i4274F1No@jntp> <87a5ijk38i.fsf@bsb.me.uk>
 <G1mVUkcsH2hxNr2IXtw2WTVL2VY@jntp>
 <3bcdc0e737dc23dca26ae5c0f854210a2909cf15@i2pn2.org>
 <ApBClomkA5uBYzyehe1GYeW1fcw@jntp> <v73ptm$qcak$1@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 15 Jul 2024 20:53:27 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="fa55f4f056f14c196b29b616b953e25b";
	logging-data="869516"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18tkhGA2KCXQ3ze7QneP1I+"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:tItBObwPrl8+doUqKN6ARdt3fPM=
In-Reply-To: <v73ptm$qcak$1@dont-email.me>
Content-Language: de-DE
Bytes: 1977

Am 15.07.2024 um 20:31 schrieb Python:
> Le 15/07/2024 à 16:46, WM a écrit :

>> Probably the idea was discussed that an inclusion-monotonic 
>> sequence of infinite terms could have an empty intersection.

Which is an extremely trivial state of afairs, Mückenheim.

Hint: There is no natural number in the intersection of all "endsegments".

Extremely trivial reason: For each and every n e IN: n !e {n+1, n+2, 
n+3, ...}. In other words, An e IN: n !e INTERSECTION_(n e IN) {n+1, 
n+2, n+3, ...}.

>> Every sensible student 

should be able to comprehend this simple fact.