Deutsch   English   Français   Italiano  
<v797bq$1vn4s$6@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: =?UTF-8?Q?Re=3A_There_is_a_first/smallest_integer_=28in_M=C3=BCcken?=
 =?UTF-8?Q?land=29?=
Date: Wed, 17 Jul 2024 12:51:21 -0700
Organization: A noiseless patient Spider
Lines: 31
Message-ID: <v797bq$1vn4s$6@dont-email.me>
References: <v78aei$1qhrg$2@dont-email.me> <iez0JhnP5QUwPTJ47oubeE1Aq5M@jntp>
 <v78m28$1sk3g$1@dont-email.me> <7mXj2D8kEhAscu3HLTqTUKsaj18@jntp>
 <d9b0dacd61b979099d931df69cf76c214d690d39@i2pn2.org>
 <Eb-CQaKSaHkMpWykEcQGtifvbV0@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 17 Jul 2024 21:51:23 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="3f8b7cebb49a7a47651d12f9ce849b53";
	logging-data="2088092"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19L7p8c2JG71Y+PvwVReOWAYUFMDT/XNnA="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:mg+vNbbxmhOpKafSWYb6WvUT9J0=
Content-Language: en-US
In-Reply-To: <Eb-CQaKSaHkMpWykEcQGtifvbV0@jntp>
Bytes: 2411

On 7/17/2024 10:17 AM, WM wrote:
> Le 17/07/2024 à 19:01, joes a écrit :
>> Am Wed, 17 Jul 2024 15:08:30 +0000 schrieb WM:
>>> Le 17/07/2024 à 16:56, Moebius a écrit :
>>>> Am 17.07.2024 um 16:43 schrieb WM:
>>>
>>>>> Can you explain how NUF(x) can [jump] from 0 [at x = 0] to [aleph_0]
>>>>> [at any]
>>>>> point x [> 0] although all unit fractions are separated by finite
>>>>> distances [...]
>>>>
>>>> Yes, of course: For each and every x e IR, x > 0 there are
>>>> countably-infinitely many unit fractions which are <= x. (Hint: No
>>>> first one.)
>>>
>>> Thema verfehlt. The question is: How does NUF(x) increase from 0 to
>>> more? There is a point where NUF is 0 and then it increases. How?
>> The same as the sign function.
> 
> No, ℵo finite intervals do not fit between [0, 1] and (0, 1]. The sign 
> function fits.
> 
>> There simply is no such "point", as
>> there is no least positive number. The distances between unit
>> fractions get infinitely small.
> 
> They remain finite in every case.

There are infinitely many of them, and none of them equals zero... 0/1 
is not a unit fraction! Damn it. :^)