Deutsch English Français Italiano |
<v88e9s$i22f$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Tom Bola <Tom@bolamail.etc> Newsgroups: sci.logic,sci.math Subject: Re: Replacement of Cardinality Date: Mon, 29 Jul 2024 17:59:55 +0200 Organization: A noiseless patient Spider Lines: 26 Message-ID: <v88e9s$i22f$1@dont-email.me> References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <881fc1a1-2e55-4f13-8beb-94d1f941b5af@att.net> <v86maa$59hg$1@dont-email.me> <vQHuVlN1Cgoica1ZFK8ssvDRc-k@jntp> <v88drl$i23v$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: 8bit Injection-Date: Mon, 29 Jul 2024 17:59:57 +0200 (CEST) Injection-Info: dont-email.me; posting-host="13691789020ae97441317fe178d1d6f6"; logging-data="591951"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19qQHAd+h0qaFvZm3nxY+whEe3AJL9NOzI=" User-Agent: 40tude_Dialog/2.0.15.1 Cancel-Lock: sha1:b2sEeGTlGR7FIrmnkbZrT+yVrtE= Bytes: 2045 Am 29.07.2024 17:52:18 FromTheRafters schrieb: > WM formulated the question : >> Le 29/07/2024 à 02:04, Moebius a écrit : >>> Am 27.07.2024 um 19:34 schrieb Jim Burns: >>>> sci.logic and sci.math >>>> >>>> On 7/26/2024 12:31 PM, WM wrote: >>>> >>>>> _The rule of subset_ >>> >>> Where did Mückenheim get this "rule" from? Any source? >> >> Logic! If A contains all elements of B, but B does not contain all elements >> of A, then A has more elements than B. > > Have you reviewed 'Cardinal Arithmetic' lately? I know it has been > pointed out to you several times. The aforementioned does not work for > infinite sets. Addition like this simply doesn't affect the 'size' of > the set if the set is infinite. A billion times "discussed" under the buzzword "Dedekind-Infinity"... The point is, that, for 50++ years, WM does not WANT (accept) our Math. - https://de.wikipedia.org/wiki/Unendliche_Menge#Dedekind-Unendlichkeit