| Deutsch English Français Italiano |
|
<v8b7v7$14jk5$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!3.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: sobriquet <dohduhdah@yahoo.com> Newsgroups: sci.lang,sci.math Subject: Re: f(x) = (x^2 + 1) --------- strange (curved Surface) Graph Date: Tue, 30 Jul 2024 19:30:14 +0200 Organization: A noiseless patient Spider Lines: 36 Message-ID: <v8b7v7$14jk5$1@dont-email.me> References: <v88qh4$jkm6$2@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 30 Jul 2024 19:30:15 +0200 (CEST) Injection-Info: dont-email.me; posting-host="5668803f05839a9740d9fe6f6059eb5d"; logging-data="1199749"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/oj7Kf+/Nmu/RRKIw9fs8aYfddJIvD+Z8=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:iVomLwVqBxafCF1KYLTQkLqs/P0= In-Reply-To: <v88qh4$jkm6$2@dont-email.me> Content-Language: nl, en-US Bytes: 2382 Op 29/07/2024 om 21:28 schreef HenHanna: > > When this function y = f(x) = (x^2 + 1) is first > introduced, we learn its Graph to be a simple parabola. > > THEN when we learn that x can be a complex number, so that > the Graph is 2 (orthogonally) linked Parabolas. > ---------- like this: > > https://phantomgraphs.weebly.com/uploads/5/4/5/4/5454288/4_4_orig.jpg > > https://www.geogebra.org/resource/czbugz9h/fofRh3ZjmwwISd2v/material-czbugz9h-thumb@l.png > > > > This graph is showing a smooth , curved surface --> > > https://i.sstatic.net/soSJ8.png > > What is this graph showing??? > > it purports to show f(x) = (x^2 + 1) Here is one way to visualize it on desmos3d https://www.desmos.com/3d/8tqp4wqzad We can verify the plots with wolfram alpha (plotting re(f), im(f), abs(f), arg(f) respectively). https://www.wolframalpha.com/input?i=plot+arg%28%28x%2Biy%29%5E2-1%29%2C+-5%3Cx%3C5%2C+-5%3Cy%3C5%2Cplotrange+%28-5%2C5%29 My function f is used to map the domain of 0 to 1 for parameters to the range -infinity to infinity. The function g is used to multiply two complex numbers.