| Deutsch English Français Italiano |
|
<v9gfmk$2154$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.logic,sci.math
Subject: Re: Replacement of Cardinality
Date: Tue, 13 Aug 2024 22:29:07 +0200
Organization: A noiseless patient Spider
Lines: 32
Message-ID: <v9gfmk$2154$1@dont-email.me>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
<f920592b-897c-48b9-a9af-80f25bc60e4b@att.net>
<DDPks1ynTy6IhIWNHaxt25GM1v0@jntp>
<c1f0efc8-04ca-4f2d-9820-cfd54c0eca73@att.net> <v90rp5$3dbpd$1@dont-email.me>
<L8Pl0ELcnLfKVO0KrMmhSqDd-Y0@jntp> <v926ot$3tjq6$1@dont-email.me>
<v93a8c$7o8h$1@dont-email.me> <v93eud$9abg$1@dont-email.me>
<d4dd199f-088e-4b0e-b40e-a0f2366731e7@att.net>
<hsF1KQs0AQ1chexm5WbqhBC9qdw@jntp> <v98q85$ue8i$3@dont-email.me>
<v98qmp$ul4b$1@dont-email.me> <v98qum$ue8e$1@dont-email.me>
<v98re2$ul4c$3@dont-email.me> <v9gbvl$1g5h$10@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Tue, 13 Aug 2024 22:29:08 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="93d34f2ff838fdba72a3b476445e28b7";
logging-data="66724"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+QKrjdp80rt89du2tGN3GT"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:HPwr/qcQrNq1+Szt0n3lMFNc2fg=
Content-Language: de-DE
In-Reply-To: <v9gbvl$1g5h$10@dont-email.me>
Bytes: 2537
Am 13.08.2024 um 21:25 schrieb Chris M. Thomasson:
> It depends on context. Are we going from 1/1 all the way down, or from
> 0 all the way up to 1/1.
Again, 1/1 is the first term in the sequence (1/1, 1/2, 1/3, ...), but
it's the largest/last unit fraction in respect to < (as defined on IR,
and hence on the unit fractions).
.... < 1/3 < 1/2 < 1/1.
> 0 is not a unit fraction, which means there is no smallest one... Fair enough?
Right. There is no smallest unit fraction (in respect to < as defined on
the IR).
Proof: If u is a unit fraction, 1/(1/u + 1) is a smaller one.
Using symbols: Au e {1/n : n e IN}: 1/(1/u + 1) e {1/n : n e IN} &
1/(1/u + 1) < u.
Or with the definition:
1/IN := {1/n : n e IN}
just:
Au e 1/IN: 1/(1/u + 1) e 1/IN & 1/(1/u + 1) < u.
This implies:
Au e 1/IN: Eu' e 1/IN: u' < u.
"For each and every unit fraction, there is a smaller one."