| Deutsch English Français Italiano |
|
<v9lsca$13gef$3@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.logic,sci.math
Subject: Re: Replacement of Cardinality
Date: Thu, 15 Aug 2024 23:36:09 +0200
Organization: A noiseless patient Spider
Lines: 22
Message-ID: <v9lsca$13gef$3@dont-email.me>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
<6c471296-90b8-4cf7-bc9b-480bd34ef190@att.net> <v93n0s$b7a2$4@dont-email.me>
<1f25a3d6-7b0e-476d-aa99-ecb003cf763f@att.net>
<b0XFTJvTommasLo9Ns10OeW0TN0@jntp>
<75e2ce0e-7df8-4266-968b-9c58e4140b03@att.net>
<RCAlRuRy_RKB_tYItKJs7fNcIs0@jntp>
<35d8c0a1-dab3-4c15-8f24-068e8200cb07@att.net>
<sglIw8p3PCeHivaAhg-7IVZCN4A@jntp>
<fcd3f5f1-fd6e-44ac-823d-fa567d5fb9ba@att.net>
<t_rVz7RU7M3aHZTB1TQJS59Ez0I@jntp>
<45ad1007-b1a7-49d0-a650-048f02738226@att.net> <v9kt4r$uial$6@dont-email.me>
<f213c769-4ed8-4a98-bb20-c647e41987e8@att.net> <v9lb8k$10teg$2@dont-email.me>
<7ac6c715-3b64-4fea-ae1c-2d99cf7f18dc@att.net>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 15 Aug 2024 23:36:10 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="6f15604c04b8929e2981b2c365f0c048";
logging-data="1163727"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18zpwRs2uoBAHbw0XXq5c1T"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:oL7ggUfqMzj1fchDPDcOpU0qoj0=
Content-Language: de-DE
In-Reply-To: <7ac6c715-3b64-4fea-ae1c-2d99cf7f18dc@att.net>
Bytes: 2131
Am 15.08.2024 um 20:36 schrieb Jim Burns:
> Translate ¬∃ᴿx(x = 1/0) to
There is nothing to translate. "¬∃ᴿx = 1/0" is just a meaningless
expression, because "1/0" is a undefined (non-denoting) term/name.
> ¬∃ᴿx: 0⋅x = 1
Now this is a meaningful statement.
> Prove that.
Indeed! :-)
For this we might assume
∃ᴿx: 0⋅x = 1
and try to derive a contradiction from this assumption.
->Proof by contradiction (RRA).