Deutsch English Français Italiano |
<v9lsqh$13gef$4@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.logic,sci.math Subject: Re: Replacement of Cardinality Date: Thu, 15 Aug 2024 23:43:44 +0200 Organization: A noiseless patient Spider Lines: 37 Message-ID: <v9lsqh$13gef$4@dont-email.me> References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <6c471296-90b8-4cf7-bc9b-480bd34ef190@att.net> <v93n0s$b7a2$4@dont-email.me> <1f25a3d6-7b0e-476d-aa99-ecb003cf763f@att.net> <b0XFTJvTommasLo9Ns10OeW0TN0@jntp> <75e2ce0e-7df8-4266-968b-9c58e4140b03@att.net> <RCAlRuRy_RKB_tYItKJs7fNcIs0@jntp> <35d8c0a1-dab3-4c15-8f24-068e8200cb07@att.net> <sglIw8p3PCeHivaAhg-7IVZCN4A@jntp> <fcd3f5f1-fd6e-44ac-823d-fa567d5fb9ba@att.net> <t_rVz7RU7M3aHZTB1TQJS59Ez0I@jntp> <45ad1007-b1a7-49d0-a650-048f02738226@att.net> <v9kt4r$uial$6@dont-email.me> <f213c769-4ed8-4a98-bb20-c647e41987e8@att.net> <v9lb8k$10teg$2@dont-email.me> <7ac6c715-3b64-4fea-ae1c-2d99cf7f18dc@att.net> <v9lsca$13gef$3@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 15 Aug 2024 23:43:45 +0200 (CEST) Injection-Info: dont-email.me; posting-host="6f15604c04b8929e2981b2c365f0c048"; logging-data="1163727"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/DNk6boCrwKg7qSrHL5U3v" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:jm+0vlr7qx24gjaxt6EMkc4Jza4= In-Reply-To: <v9lsca$13gef$3@dont-email.me> Content-Language: de-DE Bytes: 2623 Am 15.08.2024 um 23:36 schrieb Moebius: > Am 15.08.2024 um 20:36 schrieb Jim Burns: > >> Translate ¬∃ᴿx(x = 1/0) to > > There is nothing to translate. "¬∃ᴿx = 1/0" is just a meaningless > expression, because "1/0" is a undefined (non-denoting) term/name. > >> ¬∃ᴿx: 0⋅x = 1 > > Now this is a meaningful statement. > >> Prove that. > > Indeed! :-) > > For this we might assume > > ∃ᴿx: 0⋅x = 1 > > and try to derive a contradiction from this assumption. > > ->Proof by contradiction (RRA). Hint: And BECAUSE we can prove: ¬∃x(x e IR & 0⋅x = 1) we CAN'T define "1/0" the following way: 1/0 := the x e IR such that 0⋅x = 1 . Nuff said. (It should be clear that the function x |-> 1/x is not defined for x = 0, hence even we have defined x |-> 1/x (for x e IR, x =/= 0), we may not write "1/0", based on THIS definition.)