Deutsch English Français Italiano |
<v9muof$1brsi$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.nobody.at!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.logic,sci.math Subject: Re: Replacement of Cardinality Date: Fri, 16 Aug 2024 09:22:55 +0200 Organization: A noiseless patient Spider Lines: 22 Message-ID: <v9muof$1brsi$1@dont-email.me> References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <75e2ce0e-7df8-4266-968b-9c58e4140b03@att.net> <RCAlRuRy_RKB_tYItKJs7fNcIs0@jntp> <35d8c0a1-dab3-4c15-8f24-068e8200cb07@att.net> <sglIw8p3PCeHivaAhg-7IVZCN4A@jntp> <c3b058c033321a59844da1fa46c5ac85a4b6566c@i2pn2.org> <mH8M1Rqfb7VYix0Wa0ZP-U89eG4@jntp> <4412ba58-855f-401d-9fd0-879d5cb50062@att.net> <CYrSgRVL0Y9qT9pbZDtRgAv0Juo@jntp> <219eed30-9918-4759-9b7e-826088fc91c9@att.net> <xisJXSuqF8w8nqMJNrXzPaSyU-4@jntp> <a2f6c659-4326-4cc6-b4df-0720ab07e61d@att.net> <v9lle5$12mrh$1@dont-email.me> <0aae40c7-1092-4b12-99dc-290aa5a94021@att.net> <v9m28f$14adh$5@dont-email.me> <80662980-e93e-4af4-9489-f17fad3097d1@att.net> <v9mpak$1b0t2$1@dont-email.me> <v9mpo7$1b0t3$1@dont-email.me> <v9msnt$1bjlj$1@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 16 Aug 2024 09:22:55 +0200 (CEST) Injection-Info: dont-email.me; posting-host="8de5541c6b599521b97afbd172dfb739"; logging-data="1437586"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+4o1r9uGopWrOjADvL2MIt" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:OdRPPngu5rbWltQ5GY7VpU7YKpw= Content-Language: de-DE In-Reply-To: <v9msnt$1bjlj$1@dont-email.me> Bytes: 2439 Am 16.08.2024 um 08:48 schrieb Chris M. Thomasson: > On 8/15/2024 10:57 PM, Moebius wrote: >> Am 16.08.2024 um 07:50 schrieb Moebius: >> >>> Of course, _if_ we already have introduced the real numbers (i.e. IR) >>> we may define >>> >>> √2 = the real number x such that x^2 = 2 , (*) >>> >>> _after_ we have shown that there is exactly one x e IR such that >>> x^2 = 2. >>> >>> From (*) we get immediately: (√2)^2 = 2 >> >> Now we may assume that there are natural numbers n,m such that √2 = n/m. >> >> (...) > > The infinite convergents of continuous fractions can describe sqrt(2) up > to any desired precision? Sure.