| Deutsch English Français Italiano |
|
<vGabX5KcsSFv7iYyGBJp3tBp4FM@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <vGabX5KcsSFv7iYyGBJp3tBp4FM@jntp> JNTP-Route: nemoweb.net JNTP-DataType: Article Subject: Re: Comment a-t-on pu passer au travers de telles =?UTF-8?Q?=C3=A9vidence?= =?UTF-8?Q?s=3F=20?= References: <UQh8-7I3o2X_wOnyxv4rtYlEr44@jntp> <150089ea00fef6ab832c92623c24003676790916@i2pn2.org> Newsgroups: fr.sci.maths JNTP-HashClient: aR9WpB8b69FQG9dowzh7yn9wJI0 JNTP-ThreadID: sbMlU0rw_Ur0Sypsjwzx50uIhlw JNTP-Uri: https://www.nemoweb.net/?DataID=vGabX5KcsSFv7iYyGBJp3tBp4FM@jntp User-Agent: Nemo/1.0 JNTP-OriginServer: nemoweb.net Date: Sun, 06 Apr 25 18:54:05 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36 Injection-Info: nemoweb.net; posting-host="0622b338f00df6c7e122ad5f6ee90645acf995aa"; logging-data="2025-04-06T18:54:05Z/9268552"; posting-account="4@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: Richard Hachel <r.hachel@tiscali.fr> Bytes: 2260 Lines: 22 Le 06/04/2025 à 17:29, Eric H a écrit : > Le dimanche 6 avril 2025 à 00:38 , Richard Hachel, S'est exprimé : > Ton approche de la rotation de 180° pour “trouver” les racines complexes > est une manière originale d’interpréter la transformation géométrique des > fonctions, mais il faut veiller à bien relier cela aux concepts > classiques des racines complexes dans le plan complexe. Qui a dit qu'il fallait bien veiller à rester englué dans des concepts classiques? Quant aux racines complexes d'une fonction cartésienne dans un plan cartésien, je les place dans mon plan cartésien. Je ne les place pas dans un plan d'Argand, où elles n'ont strictement rien à faire. Les plans d'Argand, ce peut être utile en électro-magnétisme. Pour les recherche de racines de fonctions, ça n'a aucun intérêt. Pas plus qu'en relativité restreinte d'ailleurs. R.H.