Deutsch   English   Français   Italiano  
<vLC6xxNBX6XYjIJpFLfGJMy1Wlo@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!news.gegeweb.eu!gegeweb.org!pasdenom.info!from-devjntp
Message-ID: <vLC6xxNBX6XYjIJpFLfGJMy1Wlo@jntp>
JNTP-Route: nemoweb.net
JNTP-DataType: Article
Subject: Re: Equation complexe
References: <oAvE_mEWK82aUJOdwpGna1Rzs1U@jntp> <cd899a53-0106-466f-8e13-a2e8e57ca2ba@att.net> <YEkr142e3Iw10sNTl94yHf-u1kY@jntp>
 <bb3c730b-e8b7-4a24-a1e7-4a6168f8ad40@att.net> <dEPuOowIkceWgMnraoFj2-CO1RE@jntp> <YgJxJ6kusVsB0zMO0Cua3VJiRr0@jntp>
Newsgroups: sci.math
JNTP-HashClient: 2YlTA0pEZGxUfN13fgRXkzZ2ELw
JNTP-ThreadID: O5CXkAcAe1D7_dx2s1eq7KbScfI
JNTP-ReferenceUserID: 190@nemoweb.net
JNTP-Uri: https://www.nemoweb.net/?DataID=vLC6xxNBX6XYjIJpFLfGJMy1Wlo@jntp
User-Agent: Nemo/1.0
JNTP-OriginServer: nemoweb.net
Date: Wed, 26 Feb 25 19:10:47 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36
Injection-Info: nemoweb.net; posting-host="0622b338f00df6c7e122ad5f6ee90645acf995aa"; logging-data="2025-02-26T19:10:47Z/9223150"; posting-account="4@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: Richard Hachel <r.hachel@tiscali.fr>

Le 26/02/2025 à 19:48, Python a écrit :
> In your previous "system", this was false: there were divisors of 0 i.e. 
> non-zero items z1, z2 such as z1*z2 = 0. You didn't even notice it first, I 
> pointed it out it on fr.sci.maths.

This is entirely correct.
And you were absolutely right to point this out.
In the Hachel system, we have Z=z1+z2=(a+a')+i(b+b').
Which is consistent with the traditional mathematical system.
But we do not have Z=z1.z2=(aa'-bb')+i(ab'+a'b)
but Z=z1.z2=(aa'+bb')+i(ab'+a'b).
So far no problem, it may be wrong (which I don't think),
but it is consistent.
Now, the inverse operation which is the quotient, will obviously also be 
upset, and, we have, in the Hachel formula a divisor a'+ib' which will 
induce in the denominator a'²-b'².
This is what Jean-Paul Messager noticed. What does this mean?
This means that, for example, you cannot divide a complex by another 
complex of type a'+ib' if a'=b'.
On the surface, it may sound funny to say that you cannot divide a complex 
by 5+5i for example.
But it makes sense.
This amounts to dividing by zero without us realizing it.

R.H.