| Deutsch English Français Italiano |
|
<vLC6xxNBX6XYjIJpFLfGJMy1Wlo@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!news.gegeweb.eu!gegeweb.org!pasdenom.info!from-devjntp Message-ID: <vLC6xxNBX6XYjIJpFLfGJMy1Wlo@jntp> JNTP-Route: nemoweb.net JNTP-DataType: Article Subject: Re: Equation complexe References: <oAvE_mEWK82aUJOdwpGna1Rzs1U@jntp> <cd899a53-0106-466f-8e13-a2e8e57ca2ba@att.net> <YEkr142e3Iw10sNTl94yHf-u1kY@jntp> <bb3c730b-e8b7-4a24-a1e7-4a6168f8ad40@att.net> <dEPuOowIkceWgMnraoFj2-CO1RE@jntp> <YgJxJ6kusVsB0zMO0Cua3VJiRr0@jntp> Newsgroups: sci.math JNTP-HashClient: 2YlTA0pEZGxUfN13fgRXkzZ2ELw JNTP-ThreadID: O5CXkAcAe1D7_dx2s1eq7KbScfI JNTP-ReferenceUserID: 190@nemoweb.net JNTP-Uri: https://www.nemoweb.net/?DataID=vLC6xxNBX6XYjIJpFLfGJMy1Wlo@jntp User-Agent: Nemo/1.0 JNTP-OriginServer: nemoweb.net Date: Wed, 26 Feb 25 19:10:47 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36 Injection-Info: nemoweb.net; posting-host="0622b338f00df6c7e122ad5f6ee90645acf995aa"; logging-data="2025-02-26T19:10:47Z/9223150"; posting-account="4@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: Richard Hachel <r.hachel@tiscali.fr> Le 26/02/2025 à 19:48, Python a écrit : > In your previous "system", this was false: there were divisors of 0 i.e. > non-zero items z1, z2 such as z1*z2 = 0. You didn't even notice it first, I > pointed it out it on fr.sci.maths. This is entirely correct. And you were absolutely right to point this out. In the Hachel system, we have Z=z1+z2=(a+a')+i(b+b'). Which is consistent with the traditional mathematical system. But we do not have Z=z1.z2=(aa'-bb')+i(ab'+a'b) but Z=z1.z2=(aa'+bb')+i(ab'+a'b). So far no problem, it may be wrong (which I don't think), but it is consistent. Now, the inverse operation which is the quotient, will obviously also be upset, and, we have, in the Hachel formula a divisor a'+ib' which will induce in the denominator a'²-b'². This is what Jean-Paul Messager noticed. What does this mean? This means that, for example, you cannot divide a complex by another complex of type a'+ib' if a'=b'. On the surface, it may sound funny to say that you cannot divide a complex by 5+5i for example. But it makes sense. This amounts to dividing by zero without us realizing it. R.H.