Deutsch   English   Français   Italiano  
<vaau6l$1223f$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Replacement of Cardinality
Date: Fri, 23 Aug 2024 23:16:05 +0200
Organization: A noiseless patient Spider
Lines: 21
Message-ID: <vaau6l$1223f$2@dont-email.me>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
 <45ad1007-b1a7-49d0-a650-048f02738226@att.net>
 <ZrUpfgO3RQL0qsj_ugH_ng035iM@jntp>
 <e51a19c8-9f22-43ec-a382-b93019b4ce1d@att.net>
 <Aj67svgBqlC6ubyAZ01SM3EN5mc@jntp>
 <9ef8dd8a-69be-44e2-bcf6-ea9c1fb30e21@att.net>
 <LHtSphVaxvF9i9lsFtvEfbB4PS8@jntp>
 <2e01bd19df4cd4dadc417349d86040fa204b960b@i2pn2.org>
 <eHFsweuOlnr4FWEvZev7y4BnvoE@jntp>
 <8dc63eab2b4b25152e9f9e91d985a47e3425f475@i2pn2.org>
 <fMLTytriBTbksJ4m42p7X4UQkDE@jntp>
 <556e85310cb8b53a9b63e6b1dec14e9b6defef6a@i2pn2.org>
 <v9tfsk$2g1uj$1@dont-email.me>
 <JKWdnY6Z7aUX-V_7nZ2dnZfqn_adnZ2d@giganews.com>
 <va091f$30ha0$5@dont-email.me> <va0bgr$310d1$1@dont-email.me>
 <va2r5k$3g8un$5@dont-email.me> <va3t4v$3ocf2$1@dont-email.me>
 <vaan0g$111cj$1@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 23 Aug 2024 23:16:06 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="5043646b5359cf1437edad47ef8aa2f3";
	logging-data="1116271"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+xZQ/DL/oXV6+7WXdg7Pb+"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:qfCJAwOws2CB5xEWom13QbmWrdA=
In-Reply-To: <vaan0g$111cj$1@dont-email.me>
Content-Language: de-DE
Bytes: 2497

Am 23.08.2024 um 21:13 schrieb Chris M. Thomasson:
> On 8/20/2024 10:15 PM, Moebius wrote:
>> Am 20.08.2024 um 21:35 schrieb Chris M. Thomasson:
>>
>>>>> Do you even now how to make a Cantor Set Fractal?
>>
>> Talking about fractals, there's an extremely simple "fractal".
>>
>> Just consider the real line from 0 to 1 and the points 1/2, 1/4, 
>> 1/8, ... (ad infinitum).
>>
>> If you "zoom in" at 0 bei the factors 2, 4, 8, etc. and just "focus" 
>> on the (new) "0 ... 1 part" of the "magnified" line, you will always 
>> "see" the same pattern.
>>
>> Noes?
> 
> Right. That is a very simple fractal that shows self similarity all the 
> way down for sure.

Pssssst... Don't tell Mückenheim!