| Deutsch English Français Italiano |
|
<vaau6l$1223f$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Replacement of Cardinality Date: Fri, 23 Aug 2024 23:16:05 +0200 Organization: A noiseless patient Spider Lines: 21 Message-ID: <vaau6l$1223f$2@dont-email.me> References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <45ad1007-b1a7-49d0-a650-048f02738226@att.net> <ZrUpfgO3RQL0qsj_ugH_ng035iM@jntp> <e51a19c8-9f22-43ec-a382-b93019b4ce1d@att.net> <Aj67svgBqlC6ubyAZ01SM3EN5mc@jntp> <9ef8dd8a-69be-44e2-bcf6-ea9c1fb30e21@att.net> <LHtSphVaxvF9i9lsFtvEfbB4PS8@jntp> <2e01bd19df4cd4dadc417349d86040fa204b960b@i2pn2.org> <eHFsweuOlnr4FWEvZev7y4BnvoE@jntp> <8dc63eab2b4b25152e9f9e91d985a47e3425f475@i2pn2.org> <fMLTytriBTbksJ4m42p7X4UQkDE@jntp> <556e85310cb8b53a9b63e6b1dec14e9b6defef6a@i2pn2.org> <v9tfsk$2g1uj$1@dont-email.me> <JKWdnY6Z7aUX-V_7nZ2dnZfqn_adnZ2d@giganews.com> <va091f$30ha0$5@dont-email.me> <va0bgr$310d1$1@dont-email.me> <va2r5k$3g8un$5@dont-email.me> <va3t4v$3ocf2$1@dont-email.me> <vaan0g$111cj$1@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 23 Aug 2024 23:16:06 +0200 (CEST) Injection-Info: dont-email.me; posting-host="5043646b5359cf1437edad47ef8aa2f3"; logging-data="1116271"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+xZQ/DL/oXV6+7WXdg7Pb+" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:qfCJAwOws2CB5xEWom13QbmWrdA= In-Reply-To: <vaan0g$111cj$1@dont-email.me> Content-Language: de-DE Bytes: 2497 Am 23.08.2024 um 21:13 schrieb Chris M. Thomasson: > On 8/20/2024 10:15 PM, Moebius wrote: >> Am 20.08.2024 um 21:35 schrieb Chris M. Thomasson: >> >>>>> Do you even now how to make a Cantor Set Fractal? >> >> Talking about fractals, there's an extremely simple "fractal". >> >> Just consider the real line from 0 to 1 and the points 1/2, 1/4, >> 1/8, ... (ad infinitum). >> >> If you "zoom in" at 0 bei the factors 2, 4, 8, etc. and just "focus" >> on the (new) "0 ... 1 part" of the "magnified" line, you will always >> "see" the same pattern. >> >> Noes? > > Right. That is a very simple fractal that shows self similarity all the > way down for sure. Pssssst... Don't tell Mückenheim!