Deutsch   English   Français   Italiano  
<valbab$33s16$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Replacement of Cardinality
Date: Tue, 27 Aug 2024 22:01:15 +0200
Organization: A noiseless patient Spider
Lines: 41
Message-ID: <valbab$33s16$2@dont-email.me>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
 <75740dedb5041bfadbbe4571e22e4ff345cd93bf@i2pn2.org>
 <Paq2Wew2rfZu1s9H9hwXXFLhSBw@jntp>
 <998ed11e2d39067be8c0c9879f61e373bb2614e9@i2pn2.org>
 <w30VwLUYPUYFb8Eh-FLLus061_Y@jntp>
 <c7d66fd7-3670-40f3-bc40-0b476c632ec4@att.net>
 <Ya-sll1vWfYnJI1pa9cChoUmSvk@jntp>
 <92f2ac6f-f77a-4d0d-a045-9382f2630ae4@att.net>
 <3HSfWkWj3Xj4oGtvt7n64fuMKlw@jntp>
 <367c727b1ec91a03f221f6f9affe16d84c6a950f@i2pn2.org>
 <Nh0S9PIHxZxagI8qc_IJ6_9IvjQ@jntp> <val9nr$33pkn$2@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 27 Aug 2024 22:01:15 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="b02d027af6f84bb180cd6049e1baf472";
	logging-data="3272742"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19EcOwGnQl92dHUT5Wznop5"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:BNA1+qawjoLZomgnsM5CMwSyH84=
In-Reply-To: <val9nr$33pkn$2@dont-email.me>
Content-Language: de-DE
Bytes: 2571

Am 27.08.2024 um 21:34 schrieb Chris M. Thomasson:
> On 8/27/2024 12:20 PM, WM wrote:
>> Le 25/08/2024 à 23:18, Richard Damon a écrit :
>>>
>>> But the sum [...] adding up the terms of
>>>
>>> 1/n - 1/(n+1)
>>>
>>> never gets to 1,
> 
> 1/1 - 1/2 = .5
> 1/2 - 1/3 = .1(6)
> 1/3 - 1/4 = .08(3)

Don't forget to sum up the terms:

     (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) = ?

If we look closely we see that most of the terms (...1/k...) can be 
ignored. We just have to consider:

     1/1 - 1/4 = 3/4.

Check: .5 + .1666... + .08333... = 0.75 = 3/4. (ok)

Moreover we can prove this way that (as claimed above)

     SUM_(k=1..n) 1/k - 1/(k+1) < 1   (for all n e IN).

Proof: We consider the sum of the terms for k = 1..n (where n is an 
arbitrary natural number): (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... 
+ (1/(n-1) - 1/n) + (1/n - 1/(n+1)) = 1/1 - 1/(n+1) = 1 - d, where d > 
0. Hence: SUM_(k=1..n) 1/k - 1/(k+1) < 1. qed

>> It does, but only in the darkness.
> 
> Are you a full blown moron or just _mostly_ stupid?

I'd say BOTH.