Deutsch English Français Italiano |
<valbab$33s16$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Replacement of Cardinality Date: Tue, 27 Aug 2024 22:01:15 +0200 Organization: A noiseless patient Spider Lines: 41 Message-ID: <valbab$33s16$2@dont-email.me> References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <75740dedb5041bfadbbe4571e22e4ff345cd93bf@i2pn2.org> <Paq2Wew2rfZu1s9H9hwXXFLhSBw@jntp> <998ed11e2d39067be8c0c9879f61e373bb2614e9@i2pn2.org> <w30VwLUYPUYFb8Eh-FLLus061_Y@jntp> <c7d66fd7-3670-40f3-bc40-0b476c632ec4@att.net> <Ya-sll1vWfYnJI1pa9cChoUmSvk@jntp> <92f2ac6f-f77a-4d0d-a045-9382f2630ae4@att.net> <3HSfWkWj3Xj4oGtvt7n64fuMKlw@jntp> <367c727b1ec91a03f221f6f9affe16d84c6a950f@i2pn2.org> <Nh0S9PIHxZxagI8qc_IJ6_9IvjQ@jntp> <val9nr$33pkn$2@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 27 Aug 2024 22:01:15 +0200 (CEST) Injection-Info: dont-email.me; posting-host="b02d027af6f84bb180cd6049e1baf472"; logging-data="3272742"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19EcOwGnQl92dHUT5Wznop5" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:BNA1+qawjoLZomgnsM5CMwSyH84= In-Reply-To: <val9nr$33pkn$2@dont-email.me> Content-Language: de-DE Bytes: 2571 Am 27.08.2024 um 21:34 schrieb Chris M. Thomasson: > On 8/27/2024 12:20 PM, WM wrote: >> Le 25/08/2024 à 23:18, Richard Damon a écrit : >>> >>> But the sum [...] adding up the terms of >>> >>> 1/n - 1/(n+1) >>> >>> never gets to 1, > > 1/1 - 1/2 = .5 > 1/2 - 1/3 = .1(6) > 1/3 - 1/4 = .08(3) Don't forget to sum up the terms: (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) = ? If we look closely we see that most of the terms (...1/k...) can be ignored. We just have to consider: 1/1 - 1/4 = 3/4. Check: .5 + .1666... + .08333... = 0.75 = 3/4. (ok) Moreover we can prove this way that (as claimed above) SUM_(k=1..n) 1/k - 1/(k+1) < 1 (for all n e IN). Proof: We consider the sum of the terms for k = 1..n (where n is an arbitrary natural number): (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/(n-1) - 1/n) + (1/n - 1/(n+1)) = 1/1 - 1/(n+1) = 1 - d, where d > 0. Hence: SUM_(k=1..n) 1/k - 1/(k+1) < 1. qed >> It does, but only in the darkness. > > Are you a full blown moron or just _mostly_ stupid? I'd say BOTH.