Deutsch   English   Français   Italiano  
<valc3u$33pko$3@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!feeds.phibee-telecom.net!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: Replacement of Cardinality
Date: Tue, 27 Aug 2024 13:14:54 -0700
Organization: A noiseless patient Spider
Lines: 51
Message-ID: <valc3u$33pko$3@dont-email.me>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
 <75740dedb5041bfadbbe4571e22e4ff345cd93bf@i2pn2.org>
 <Paq2Wew2rfZu1s9H9hwXXFLhSBw@jntp>
 <998ed11e2d39067be8c0c9879f61e373bb2614e9@i2pn2.org>
 <w30VwLUYPUYFb8Eh-FLLus061_Y@jntp>
 <c7d66fd7-3670-40f3-bc40-0b476c632ec4@att.net>
 <Ya-sll1vWfYnJI1pa9cChoUmSvk@jntp>
 <92f2ac6f-f77a-4d0d-a045-9382f2630ae4@att.net>
 <3HSfWkWj3Xj4oGtvt7n64fuMKlw@jntp>
 <367c727b1ec91a03f221f6f9affe16d84c6a950f@i2pn2.org>
 <Nh0S9PIHxZxagI8qc_IJ6_9IvjQ@jntp> <val9nr$33pkn$2@dont-email.me>
 <valbab$33s16$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 27 Aug 2024 22:14:55 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="52c83a49fe4fa5f4a9ef4ce5f02f64f9";
	logging-data="3270296"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+9h7qo8u1FK9ztclIjDYqQSKeB4enXB38="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:2Co4GOriRGEB6tZ6w82HvS6XUyU=
In-Reply-To: <valbab$33s16$2@dont-email.me>
Content-Language: en-US
Bytes: 2897

On 8/27/2024 1:01 PM, Moebius wrote:
> Am 27.08.2024 um 21:34 schrieb Chris M. Thomasson:
>> On 8/27/2024 12:20 PM, WM wrote:
>>> Le 25/08/2024 à 23:18, Richard Damon a écrit :
>>>>
>>>> But the sum [...] adding up the terms of
>>>>
>>>> 1/n - 1/(n+1)
>>>>
>>>> never gets to 1,
>>
>> 1/1 - 1/2 = .5
>> 1/2 - 1/3 = .1(6)
>> 1/3 - 1/4 = .08(3)
> 
> Don't forget to sum up the terms:
> 
>      (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) = ?

3/4

Yup. Never equals one... However it "tends" to it... Yet the sum will 
never be one... :^)


> 
> If we look closely we see that most of the terms (...1/k...) can be 
> ignored. We just have to consider:
> 
>      1/1 - 1/4 = 3/4.
> 
> Check: .5 + .1666... + .08333... = 0.75 = 3/4. (ok)
> 
> Moreover we can prove this way that (as claimed above)
> 
>      SUM_(k=1..n) 1/k - 1/(k+1) < 1   (for all n e IN).
> 
> Proof: We consider the sum of the terms for k = 1..n (where n is an 
> arbitrary natural number): (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... 
> + (1/(n-1) - 1/n) + (1/n - 1/(n+1)) = 1/1 - 1/(n+1) = 1 - d, where d > 
> 0. Hence: SUM_(k=1..n) 1/k - 1/(k+1) < 1. qed
> 
>>> It does, but only in the darkness.
>>
>> Are you a full blown moron or just _mostly_ stupid?
> 
> I'd say BOTH.

I think so. :^)