| Deutsch English Français Italiano |
|
<van7a1$3fpfi$3@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Replacement of Cardinality
Date: Wed, 28 Aug 2024 15:05:04 +0200
Organization: A noiseless patient Spider
Lines: 43
Message-ID: <van7a1$3fpfi$3@dont-email.me>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
<maptLlB5uFyelg509mbdgWw1yGc@jntp>
<980a0ec7476c9dc5823e59b2969398bd39d9b91d@i2pn2.org>
<va5c09$3vapv$1@dont-email.me> <h6Deptvp2nWZ7A-WxxE_8LCEIYY@jntp>
<8d5b0145-b30d-44d2-b4ff-b01976f7ca66@att.net>
<WtY45o_2xWeSk0s5VFpkO7OO7b0@jntp>
<bd225e98-2fa5-49d5-806e-f25e2c8f24da@att.net>
<MyfajwdXdoZZDQyGfKtmPKpt08o@jntp>
<6cc86827-def3-4948-9e69-a3fea9e86c06@att.net>
<DjlCrzShAlCRQKbykfy5r-LuUt4@jntp>
<9ff8c24c89c598906b2081b6085de50c7ab23b44@i2pn2.org>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 28 Aug 2024 15:05:05 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="b4b7d99e1ec56348c49d4d97a95444b9";
logging-data="3663346"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18Pu9lQKvxvxuGSfqxkqdou"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:x87SfsPL+kmpuj1bxzkJ6Si2ebo=
Content-Language: de-DE
In-Reply-To: <9ff8c24c89c598906b2081b6085de50c7ab23b44@i2pn2.org>
Bytes: 2710
Am 28.08.2024 um 06:23 schrieb joes:
> Am Tue, 27 Aug 2024 19:26:25 +0000 schrieb WM:
>> Le 25/08/2024 à 23:18, Jim Burns a écrit :
>>
>>> Therefore, there is no ω-1,
*sigh*
Therefore there is no ordinal number o such that o + 1 = ω.
>> If the set of ordinal numbers is complete, then ω-1 precedes ω - by
>> definition.
> How does it go again?
WM defines "complete" comcerning (sets of) ordinal numbers the following
way:
A set of ordinals is /complete/ iff each and every ordinal
in the set (except 0) has an immediate predecessor (which
precedes it).
Simple as that.
In this sense, {0, 1, 2, 3, ... ω} is not (Mückenheim) complete.
Though clearly no ordinal between 0 and ω is "missing" - LOL. :-)
Hint: ~Eo e ORD: An e IN: n < o < ω.
Hence the term "complete" as defined by Mückenheim is quite "misleading"
(to say the least).
We'd better define:
A set of ordinals is /Mückenheim complete/ iff each and every
ordinal in the set (except 0) has an immediate predecessor
(which precedes it).
Theorem: {0, 1, 2, 3, ... ω} is not Mückenheim complete. :-)
Though it's not clear what's missing here. :-)