| Deutsch English Français Italiano |
|
<vbc7tk$at7q$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Paul.B.Andersen" <relativity@paulba.no> Newsgroups: sci.physics.relativity Subject: Re: The problem of relativistic synchronisation Date: Thu, 5 Sep 2024 14:25:43 +0200 Organization: A noiseless patient Spider Lines: 53 Message-ID: <vbc7tk$at7q$2@dont-email.me> References: <m_uze6jFLkrMPuR4XaNmQntFPLY@jntp> <siZVeXFhx1b-RHNvgyKaFJEz2Sc@jntp> <vb28vm$1i5d6$2@dont-email.me> <2VJMHmUL3oTjzHTxkbHeeVgwp1A@jntp> <vb2tvf$1ls0b$1@dont-email.me> <vb4sas$2u11j$1@dont-email.me> <FwN11HvPTqkgQgrbwnddFC1OY98@jntp> <vb79g4$3cout$1@dont-email.me> <FUkaOI4ar_TcsN7KN74WFA8f3Yw@jntp> <vbactr$3v15v$1@dont-email.me> <aUNR2GXBkc_bVoYI-Y6TV491wuE@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 05 Sep 2024 14:24:20 +0200 (CEST) Injection-Info: dont-email.me; posting-host="89fb0b53a9b584bcfecc9ad9445e1fe9"; logging-data="357626"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/hBrq9r05CvoPqnD7xj1Xn" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:HH3bHIJA00uec9pWmysBa0QDcBU= Content-Language: en-GB In-Reply-To: <aUNR2GXBkc_bVoYI-Y6TV491wuE@jntp> Bytes: 2489 Den 05.09.2024 01:23, skrev Richard Hachel: > > Vo=0.8c > > Vapp=Vo/(1+cosµ.Vo/c) > > Vapp'=(4/9)c > > Vapp"=4c > > R.H. How confused is it possible to be? :-D You must know that this 'apparent speed' is a visual observation (telescope). From whence did you get the idiotic idea that somebody is visually observing any of the clocks in this paper? https://paulba.no/pdf/Mutual_time_dilation.pdf A and B are moving with the speed v = 0.8c in K' <- A' and B' are moving with the speed v = 0.8c in K -> Nothing is moving with any other speed than v. There are no 'apparent speeds'. Is this too hard for you to understand? ---------------------- BTW, your equation above is wrong. It should be: Vapp = v⋅sin(μ)/(1 - (v/c)⋅cos(μ)) where μ is the angle between the observed object's velocity and the line of sight. That is because we can only observe the transverse component of the object's velocity. If the object is coming right at us, μ = 0⁰, and Vapp = 0. Note that v_app > c when v > c/(sin(μ)+cos(μ)) -- Paul https://paulba.no/