Deutsch   English   Français   Italiano  
<vbc7tk$at7q$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Paul.B.Andersen" <relativity@paulba.no>
Newsgroups: sci.physics.relativity
Subject: Re: The problem of relativistic synchronisation
Date: Thu, 5 Sep 2024 14:25:43 +0200
Organization: A noiseless patient Spider
Lines: 53
Message-ID: <vbc7tk$at7q$2@dont-email.me>
References: <m_uze6jFLkrMPuR4XaNmQntFPLY@jntp>
 <siZVeXFhx1b-RHNvgyKaFJEz2Sc@jntp> <vb28vm$1i5d6$2@dont-email.me>
 <2VJMHmUL3oTjzHTxkbHeeVgwp1A@jntp> <vb2tvf$1ls0b$1@dont-email.me>
 <vb4sas$2u11j$1@dont-email.me> <FwN11HvPTqkgQgrbwnddFC1OY98@jntp>
 <vb79g4$3cout$1@dont-email.me> <FUkaOI4ar_TcsN7KN74WFA8f3Yw@jntp>
 <vbactr$3v15v$1@dont-email.me> <aUNR2GXBkc_bVoYI-Y6TV491wuE@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 05 Sep 2024 14:24:20 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="89fb0b53a9b584bcfecc9ad9445e1fe9";
	logging-data="357626"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/hBrq9r05CvoPqnD7xj1Xn"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:HH3bHIJA00uec9pWmysBa0QDcBU=
Content-Language: en-GB
In-Reply-To: <aUNR2GXBkc_bVoYI-Y6TV491wuE@jntp>
Bytes: 2489

Den 05.09.2024 01:23, skrev Richard Hachel:
> 
> Vo=0.8c
> 
> Vapp=Vo/(1+cosµ.Vo/c)
> 
> Vapp'=(4/9)c
> 
> Vapp"=4c
> 
> R.H.

How confused is it possible to be? :-D

You must know that this 'apparent speed' is a visual
observation (telescope).

 From whence did you get the idiotic idea that somebody
is visually observing any of the clocks in this paper?

https://paulba.no/pdf/Mutual_time_dilation.pdf

A  and B  are moving with the speed v = 0.8c in K'  <-
A' and B' are moving with the speed v = 0.8c in K   ->

Nothing is moving with any other speed than v.
There are no 'apparent speeds'.

Is this too hard for you to understand?

----------------------

BTW, your equation above is wrong.

It should be:
  Vapp = v⋅sin(μ)/(1 - (v/c)⋅cos(μ))

where μ is the angle between the observed object's
velocity and the line of sight.

That is because we can only observe the transverse
component of the object's velocity.

If the object is coming right at us, μ = 0⁰, and Vapp = 0.

Note that v_app > c when v > c/(sin(μ)+cos(μ))


-- 
Paul

https://paulba.no/