Deutsch   English   Français   Italiano  
<vbiqf9$1jghe$6@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: How many different unit fractions are lessorequal than all unit
 fractions?
Date: Sun, 8 Sep 2024 02:17:45 +0200
Organization: A noiseless patient Spider
Lines: 24
Message-ID: <vbiqf9$1jghe$6@dont-email.me>
References: <vb4rde$22fb4$2@solani.org>
 <3d1a8334-deee-45c6-ae03-340cd8551908@att.net> <vbafj7$3vd6q$1@dont-email.me>
 <69325e33-6b9a-4c2f-a0e3-25508d41b114@att.net>
 <rMATvapsf5bpmLmDOt3mDtI5bcA@jntp>
 <d7e0b83e-66ca-4d1f-a165-69c0dd47718e@att.net> <vberjd$qdqn$1@dont-email.me>
 <9a283f449c72aebaeb1ee162e2089cb7ff422999@i2pn2.org>
 <vbhif6$1bi3l$5@dont-email.me>
 <c3127ea5fa703a8c9a565c54b9e85f93c2cacee2@i2pn2.org>
 <vbhkit$1bi3l$7@dont-email.me> <vbihtg$1i4ps$4@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 08 Sep 2024 02:17:46 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="5247ef3a35b112b69d2c459d93554a2c";
	logging-data="1688110"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18Krkok+AmPz1DMGYTcJ2iM"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:EiVtFuL7x882c73JDjGeCy3iitw=
Content-Language: de-DE
In-Reply-To: <vbihtg$1i4ps$4@dont-email.me>
Bytes: 2493

Am 07.09.2024 um 23:51 schrieb Chris M. Thomasson:

>> The unit fractions are identical because they sit at the same x, but 
>> they differ because they are ℵo different unit fractions.

Mückenheim, für jedes x e IR, x > 0, sind die "ℵo different unit 
fractions" 1/ceil(1/x + 1), 1/ceil(1/x + 2), 1/ceil(1/x + 3), ... 
allesamt KLEINER als x. Außerdem sind sie paarweise verschieden. Heißt: 
An,m e IN: n =/= m -> 1/ceil(1/x + n) =/= 1/ceil(1/x + m). Also, nein, 
they DON'T "sit at the same x".

Man kann das auch so hinschreiben: Für jedes x e IR, x > 0:

       0 < ... < 1/ceil(1/x + 3) < 1/ceil(1/x + 2) < 1/ceil(1/x + 1) < x.

Dein Gelaber wird zunehmend wirrer, Mückenheim.

____________________________________________________________________

Man kann da auch gleich den "Beweis" für den Umstand einflechten, dass 
es keinen kleinsten Stammbruch gibt:

       0 < ... < 1/(1/s + 1) < s < ... < 1/ceil(1/x + 3) < 1/ceil(1/x + 
2) < 1/ceil(1/x + 1) < x.