| Deutsch English Français Italiano |
|
<vbjhf9$1rat4$5@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.nobody.at!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? Date: Sat, 7 Sep 2024 23:50:17 -0700 Organization: A noiseless patient Spider Lines: 31 Message-ID: <vbjhf9$1rat4$5@dont-email.me> References: <vb4rde$22fb4$2@solani.org> <3d1a8334-deee-45c6-ae03-340cd8551908@att.net> <vbafj7$3vd6q$1@dont-email.me> <69325e33-6b9a-4c2f-a0e3-25508d41b114@att.net> <rMATvapsf5bpmLmDOt3mDtI5bcA@jntp> <d7e0b83e-66ca-4d1f-a165-69c0dd47718e@att.net> <vberjd$qdqn$1@dont-email.me> <9a283f449c72aebaeb1ee162e2089cb7ff422999@i2pn2.org> <vbhif6$1bi3l$5@dont-email.me> <c3127ea5fa703a8c9a565c54b9e85f93c2cacee2@i2pn2.org> <vbhkit$1bi3l$7@dont-email.me> <vbihtg$1i4ps$4@dont-email.me> <vbiqf9$1jghe$6@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 08 Sep 2024 08:50:17 +0200 (CEST) Injection-Info: dont-email.me; posting-host="d44d7012c3ec9d16fb2fdce73058c980"; logging-data="1944484"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+IdnXc1Ep2Az59gc9KiAd55XyLXAMSHB8=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:+A27nwVBzjhHSve3S6n4hpFO5h4= Content-Language: en-US In-Reply-To: <vbiqf9$1jghe$6@dont-email.me> Bytes: 2730 On 9/7/2024 5:17 PM, Moebius wrote: > Am 07.09.2024 um 23:51 schrieb Chris M. Thomasson: > >>> The unit fractions are identical because they sit at the same x, but >>> they differ because they are ℵo different unit fractions. > > Mückenheim, für jedes x e IR, x > 0, sind die "ℵo different unit > fractions" 1/ceil(1/x + 1), 1/ceil(1/x + 2), 1/ceil(1/x + 3), ... > allesamt KLEINER als x. Außerdem sind sie paarweise verschieden. Heißt: > An,m e IN: n =/= m -> 1/ceil(1/x + n) =/= 1/ceil(1/x + m). Also, nein, > they DON'T "sit at the same x". > > Man kann das auch so hinschreiben: Für jedes x e IR, x > 0: > > 0 < ... < 1/ceil(1/x + 3) < 1/ceil(1/x + 2) < 1/ceil(1/x + 1) < x. > > Dein Gelaber wird zunehmend wirrer, Mückenheim. > > ____________________________________________________________________ > > Man kann da auch gleich den "Beweis" für den Umstand einflechten, dass > es keinen kleinsten Stammbruch gibt: > > 0 < ... < 1/(1/s + 1) < s < ... < 1/ceil(1/x + 3) < 1/ceil(1/x + > 2) < 1/ceil(1/x + 1) < x. WM cannot be this bad, right? wow... Steve Martin as RUPRECHT https://youtu.be/eF8QAeQm3ZM