Deutsch   English   Français   Italiano  
<vbvbkj$c8gk$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!npeer.as286.net!dummy01.as286.net!3.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: How many different unit fractions are lessorequal than all unit
 fractions?
Date: Thu, 12 Sep 2024 11:24:18 -0700
Organization: A noiseless patient Spider
Lines: 30
Message-ID: <vbvbkj$c8gk$1@dont-email.me>
References: <vb4rde$22fb4$2@solani.org> <vbn3eb$2em18$4@dont-email.me>
 <vbn45r$2d8fc$10@dont-email.me> <vbnfvo$2gn73$2@dont-email.me>
 <vbnuqq$2it4a$2@dont-email.me> <vbp9dk$2u3sh$1@dont-email.me>
 <vbq4ve$31fu6$10@dont-email.me>
 <fd09e9afa6b0c3041b90c5d788681bb2c92f9d2e@i2pn2.org>
 <vbs9v8$3l368$3@dont-email.me>
 <73f09425214bb25768fabf576b4ae5d98ef97431@i2pn2.org>
 <Iz5zSuCuwslwe6r8CqsrwF8fszk@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 12 Sep 2024 20:24:19 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="26dfebf598c361779a3e3249a41dbd07";
	logging-data="401940"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18FHKKYOPrjqF5ZftchlKHd20T9DaH78zM="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:0UKK5G1guElsZ0DffNpLfKwyo1M=
In-Reply-To: <Iz5zSuCuwslwe6r8CqsrwF8fszk@jntp>
Content-Language: en-US
Bytes: 2258

On 9/12/2024 4:18 AM, WM wrote:
> Le 12/09/2024 à 03:00, Richard Damon a écrit :
> 
>> So, you can't "index" an unbounded set of unit fractions from 0, as 
>> there isn't a "first" unit fraction from that end.
>>
>> We can "address" those unit fractions with the value, but we can not 
>> "index" them from 0, only from 1/1.
> 
> If you can index all unit fractions, then you can index them from every 
> side.

No. Thinking of using natural numbers to index them.

1 = 1/1
2 = 1/2
3 = 1/3
....

Since there is no _largest_ natural number, you cannot find the other 
end... See?


> Fact is that NUF(x) increases from 0, but at no point it can inc4rease 
> by more than 1 because of
> ∀n ∈ ℕ: 1/n - 1/(n+1) > 0
> Regards, WM
> 
>