| Deutsch English Français Italiano |
|
<vbvbkj$c8gk$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!npeer.as286.net!dummy01.as286.net!3.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? Date: Thu, 12 Sep 2024 11:24:18 -0700 Organization: A noiseless patient Spider Lines: 30 Message-ID: <vbvbkj$c8gk$1@dont-email.me> References: <vb4rde$22fb4$2@solani.org> <vbn3eb$2em18$4@dont-email.me> <vbn45r$2d8fc$10@dont-email.me> <vbnfvo$2gn73$2@dont-email.me> <vbnuqq$2it4a$2@dont-email.me> <vbp9dk$2u3sh$1@dont-email.me> <vbq4ve$31fu6$10@dont-email.me> <fd09e9afa6b0c3041b90c5d788681bb2c92f9d2e@i2pn2.org> <vbs9v8$3l368$3@dont-email.me> <73f09425214bb25768fabf576b4ae5d98ef97431@i2pn2.org> <Iz5zSuCuwslwe6r8CqsrwF8fszk@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 12 Sep 2024 20:24:19 +0200 (CEST) Injection-Info: dont-email.me; posting-host="26dfebf598c361779a3e3249a41dbd07"; logging-data="401940"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18FHKKYOPrjqF5ZftchlKHd20T9DaH78zM=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:0UKK5G1guElsZ0DffNpLfKwyo1M= In-Reply-To: <Iz5zSuCuwslwe6r8CqsrwF8fszk@jntp> Content-Language: en-US Bytes: 2258 On 9/12/2024 4:18 AM, WM wrote: > Le 12/09/2024 à 03:00, Richard Damon a écrit : > >> So, you can't "index" an unbounded set of unit fractions from 0, as >> there isn't a "first" unit fraction from that end. >> >> We can "address" those unit fractions with the value, but we can not >> "index" them from 0, only from 1/1. > > If you can index all unit fractions, then you can index them from every > side. No. Thinking of using natural numbers to index them. 1 = 1/1 2 = 1/2 3 = 1/3 .... Since there is no _largest_ natural number, you cannot find the other end... See? > Fact is that NUF(x) increases from 0, but at no point it can inc4rease > by more than 1 because of > ∀n ∈ ℕ: 1/n - 1/(n+1) > 0 > Regards, WM > >