| Deutsch English Français Italiano |
|
<vc2cht$1259j$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: 4D Visualisierung Date: Fri, 13 Sep 2024 14:58:21 -0700 Organization: A noiseless patient Spider Lines: 35 Message-ID: <vc2cht$1259j$1@dont-email.me> References: <vantta$3j6c0$1@dont-email.me> <vbrjd1$3g9gq$1@dont-email.me> <vbrjjj$3g9gq$2@dont-email.me> <vbsu68$3pju5$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Fri, 13 Sep 2024 23:58:22 +0200 (CEST) Injection-Info: dont-email.me; posting-host="32e5295bf326f2d283bb6f124540c159"; logging-data="1119539"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1++ex8lfYwmFELYIhMF0fHoEFREskrwiLE=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:Bkl675YhjHi5TNbHfFqAVYRcaP0= In-Reply-To: <vbsu68$3pju5$1@dont-email.me> Content-Language: en-US Bytes: 2282 On 9/11/2024 1:22 PM, guido wugi wrote: > Op 11-9-2024 om 10:15 schreef Chris M. Thomasson: >> On 9/11/2024 1:12 AM, Chris M. Thomasson wrote: >>> On 8/28/2024 12:30 PM, guido wugi wrote: >>> [...] >>> >>> Check this out: >>> >>> https://youtu.be/IVR5I5mnrsg >>> >>> ;^) >> >> Also, iirc, this experiment of mine has a vector with a non-zero 4d >> component... >> >> https://youtu.be/KRkKZj9s3wk > > I don't understand it, but they're beautiful graphics alright! But 4D? > > Meanwhile I've put a Desmos4D graph of Clifford tori, Dupin cyclides > (also shown together!) and Hopf fibration. > bolnorm4D.CT-DC-HF | Desmos <https://www.desmos.com/3d/rwj9vo31yc?lang=nl> > https://www.youtube.com/watch?v=1y6qrsJff-g&list=PL5xDSSE1qfb6c7UHcURl6wXh0pH4ARB75&index=21 > Here is an example of a 4d vector ping ponging through -1...1 wrt its w component: https://www.facebook.com/share/v/PC17LfU94uUjW6DY So, the single attractor is at point (0, 0, 0, w) for the animation. There is a major effect on the field. Here is another simulation that shows the attractor at a fixed (0, 0, 0, 0) for the entire duration: https://www.facebook.com/share/v/DXKhRoGZmpB9fX5Y/