Deutsch   English   Français   Italiano  
<vc2cht$1259j$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: 4D Visualisierung
Date: Fri, 13 Sep 2024 14:58:21 -0700
Organization: A noiseless patient Spider
Lines: 35
Message-ID: <vc2cht$1259j$1@dont-email.me>
References: <vantta$3j6c0$1@dont-email.me> <vbrjd1$3g9gq$1@dont-email.me>
 <vbrjjj$3g9gq$2@dont-email.me> <vbsu68$3pju5$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Fri, 13 Sep 2024 23:58:22 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="32e5295bf326f2d283bb6f124540c159";
	logging-data="1119539"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1++ex8lfYwmFELYIhMF0fHoEFREskrwiLE="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:Bkl675YhjHi5TNbHfFqAVYRcaP0=
In-Reply-To: <vbsu68$3pju5$1@dont-email.me>
Content-Language: en-US
Bytes: 2282

On 9/11/2024 1:22 PM, guido wugi wrote:
> Op 11-9-2024 om 10:15 schreef Chris M. Thomasson:
>> On 9/11/2024 1:12 AM, Chris M. Thomasson wrote:
>>> On 8/28/2024 12:30 PM, guido wugi wrote:
>>> [...]
>>>
>>> Check this out:
>>>
>>> https://youtu.be/IVR5I5mnrsg
>>>
>>> ;^)
>>
>> Also, iirc, this experiment of mine has a vector with a non-zero 4d 
>> component...
>>
>> https://youtu.be/KRkKZj9s3wk
> 
> I don't understand it, but they're beautiful graphics alright! But 4D?
> 
> Meanwhile I've put a Desmos4D graph of Clifford tori, Dupin cyclides 
> (also shown together!) and Hopf fibration.
> bolnorm4D.CT-DC-HF | Desmos <https://www.desmos.com/3d/rwj9vo31yc?lang=nl>
> https://www.youtube.com/watch?v=1y6qrsJff-g&list=PL5xDSSE1qfb6c7UHcURl6wXh0pH4ARB75&index=21
> 

Here is an example of a 4d vector ping ponging through -1...1 wrt its w 
component:

https://www.facebook.com/share/v/PC17LfU94uUjW6DY

So, the single attractor is at point (0, 0, 0, w) for the animation. 
There is a major effect on the field. Here is another simulation that 
shows the attractor at a fixed (0, 0, 0, 0) for the entire duration:

https://www.facebook.com/share/v/DXKhRoGZmpB9fX5Y/