Deutsch   English   Français   Italiano  
<vc4dbk$1iaor$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: How many different unit fractions are lessorequal than all unit
 fractions?
Date: Sat, 14 Sep 2024 18:24:21 +0200
Organization: A noiseless patient Spider
Lines: 33
Message-ID: <vc4dbk$1iaor$1@dont-email.me>
References: <vb4rde$22fb4$2@solani.org> <vbnuqq$2it4a$2@dont-email.me>
 <vbp9dk$2u3sh$1@dont-email.me> <vbq4ve$31fu6$10@dont-email.me>
 <fd09e9afa6b0c3041b90c5d788681bb2c92f9d2e@i2pn2.org>
 <vbs9v8$3l368$3@dont-email.me>
 <405557f7289631d63264c712d137244c940b9926@i2pn2.org>
 <vbsroa$3mvi7$2@dont-email.me> <vbt0fs$3pr1d$1@dont-email.me>
 <vbt15n$3qapk$1@dont-email.me> <btbO__HYVIMPfoOcmXp4_whV8-8@jntp>
 <vbums6$8kdn$1@dont-email.me> <vbv9i7$bpjh$2@dont-email.me>
 <acd6afe7-5de7-46a9-9438-8c8463fcd689@att.net> <vc1s8p$u3ec$8@dont-email.me>
 <a075c32a-ed0f-432f-876c-06e888abd643@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sat, 14 Sep 2024 18:24:21 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="02c3757c5f57b91c0a3dc2afba083773";
	logging-data="1649435"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18cGA+4CMst4Ar6tAAcu+Dy69ZBZyRkhxs="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:dMdTrHybAiRPWmG+RRBrTnYqwNM=
In-Reply-To: <a075c32a-ed0f-432f-876c-06e888abd643@att.net>
Content-Language: en-US
Bytes: 2383

On 13.09.2024 23:13, Jim Burns wrote:
> On 9/13/2024 1:20 PM, WM wrote:

>> Fact is that the real axis is nothing but its points.
> 
> Yes.
> ℝ[ℚ[ℤ[ℕ[⟨0,…,n⟩]]]] holds
> points.between ratios of countable.to numbers.

>> There is no gap.
> 
> Yes.
>
>> Every point has a next point but
>> next to defined points are dark points.
> 
> No.
> Next.to.defined points are not.in ℝ[ℚ[ℤ[ℕ[⟨0,…,n⟩]]]]

Not in what you know about these sets, but existing, because:
WM: There is no gap.
JB: Yes
> 
>> Next to every defined points there are ℵo dark points.
>> This configuration cannot be changed.
> 
> Whatever it is you are talking about,
> we are talking about ℝ[ℚ[ℤ[ℕ[⟨0,…,n⟩]]]]

That's not enough.

Regards, WM