Deutsch   English   Français   Italiano  
<vfcanb$2beml$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Steven G. Kargl" <sgk@REMOVEtroutmask.apl.washington.edu>
Newsgroups: comp.lang.fortran
Subject: Re: Angle Units For Trig Functions
Date: Thu, 24 Oct 2024 02:17:15 -0000 (UTC)
Organization: A noiseless patient Spider
Lines: 33
Message-ID: <vfcanb$2beml$1@dont-email.me>
References: <vf1ug0$8qpm$1@dont-email.me> <vf24qs$9mgr$1@dont-email.me>
	<vf79ii$1b5gt$1@dont-email.me> <pdXRO.88119$7OO5.22734@fx43.iad>
	<vf9hli$1nad3$4@dont-email.me> <vf9so2$1sngk$1@dont-email.me>
	<vf9upp$1sv6o$2@dont-email.me> <vfa3bs$31imq$1@paganini.bofh.team>
	<vfa4ru$1tujv$2@dont-email.me> <vfb1op$22ocr$1@dont-email.me>
	<vfbpd3$293e7$1@dont-email.me> <QVeSO.83134$UZH4.13101@fx44.iad>
	<vfbvv2$2a8la$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 24 Oct 2024 04:17:15 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="2fcf8133e626c62d4ab5737bdf70a9bd";
	logging-data="2472661"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+Znh9LaTIkUb8mHc4fEoZZ"
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
Cancel-Lock: sha1:iW7MwuRgd9PlWIsC3BW7zj5pJMg=
Bytes: 2306

On Wed, 23 Oct 2024 23:13:38 +0000, Lawrence D'Oliveiro wrote:

> On Wed, 23 Oct 2024 16:38:41 -0600, Louis Krupp wrote:
> 
>> Seriously, though, if you're interfacing with people, degrees are easier
>> and more familiar than radians.
> 
> But trig calculations are easier in radians. And it is easy to convert 
> back and forth, as I explained in the posting that started this thread.

Easier?

program foo
   real*8 x, y
   real*8, parameter :: deg2rad = 4 * atan(1.d0) / 180
   x = 137*180
   y = x * deg2rad
   print *, sind(x), sin(y)
end program foo

% gfcx -o z -Wall a.f90 && ./z
  -0.0000000000000000       -9.8590724568376608E-016

One of these values is wrong.

For x = (n + 1) * 180 and n < 2**23, sind(x) = +-0, exactly.
For y = x * pi / 180, sin(x) never equals +-0.

You seem to be missing that argument reduction for sind(x)
is much easier than argument reduction for sin(x).  

-- 
steve