Deutsch   English   Français   Italiano  
<vfcm31$2gts0$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Steven G. Kargl" <sgk@REMOVEtroutmask.apl.washington.edu>
Newsgroups: comp.lang.fortran
Subject: Re: Angle Units For Trig Functions
Date: Thu, 24 Oct 2024 05:31:13 -0000 (UTC)
Organization: A noiseless patient Spider
Lines: 22
Message-ID: <vfcm31$2gts0$1@dont-email.me>
References: <vf1ug0$8qpm$1@dont-email.me> <vf24qs$9mgr$1@dont-email.me>
	<vf79ii$1b5gt$1@dont-email.me> <pdXRO.88119$7OO5.22734@fx43.iad>
	<vf9hli$1nad3$4@dont-email.me> <vf9so2$1sngk$1@dont-email.me>
	<vf9upp$1sv6o$2@dont-email.me> <vfa3bs$31imq$1@paganini.bofh.team>
	<vfa4ru$1tujv$2@dont-email.me> <vfb1op$22ocr$1@dont-email.me>
	<vfbpd3$293e7$1@dont-email.me> <QVeSO.83134$UZH4.13101@fx44.iad>
	<vfbvv2$2a8la$1@dont-email.me> <vfcanb$2beml$1@dont-email.me>
	<vfcjga$2gc7o$3@dont-email.me> <vfckkt$2gojm$1@dont-email.me>
	<vfcljc$2gt43$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 24 Oct 2024 07:31:14 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="2fcf8133e626c62d4ab5737bdf70a9bd";
	logging-data="2652032"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/GHX1fA3Kb1sxql5sHOgtD"
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
Cancel-Lock: sha1:p76eNvOykqWJH++oO/Y1MqCEYdM=
Bytes: 2136

On Thu, 24 Oct 2024 05:22:53 +0000, Lawrence D'Oliveiro wrote:

> On Thu, 24 Oct 2024 05:06:37 -0000 (UTC), Steven G. Kargl wrote:
> 
>> For sin(x), argument reduction will give sin(0) = 0, exactly. That's one
>> angle.
> 
> More generally, it gives sin(x) ≃ x, for uncountably many angles.
> 
>> For sind(x), argument reduction will give sind(x) = 0, exactly,
>> for countable many angles.
> 
> But it never gives sind(x) anywhere close to x.

Never claimed sind(x) for x near 0 was exact.

It is, however, for floatin point arithmetic,
correct to less than or equal to 0.5 ULP.  Now,
got read Goldberg.

-- 
steve