Deutsch English Français Italiano |
<vfoe7m$12m27$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Thomas Koenig <tkoenig@netcologne.de> Newsgroups: comp.arch Subject: Re: Retirement hobby (was Re: 80286 protected mode) Date: Mon, 28 Oct 2024 16:30:46 -0000 (UTC) Organization: A noiseless patient Spider Lines: 14 Message-ID: <vfoe7m$12m27$1@dont-email.me> References: <2024Oct6.150415@mips.complang.tuwien.ac.at> <memo.20241006163428.19028W@jgd.cix.co.uk> <2024Oct7.093314@mips.complang.tuwien.ac.at> <7c8e5c75ce0f1e7c95ec3ae4bdbc9249@www.novabbs.org> <2024Oct8.092821@mips.complang.tuwien.ac.at> <ve5ek3$2jamt$1@dont-email.me> <be506ccef76d682d13205c69c761a086@www.novabbs.org> <ve6oiq$2pag3$1@dont-email.me> <ve6tv7$2q6d5$1@dont-email.me> <86y12uy8ku.fsf@linuxsc.com> <jwv34kx5afd.fsf-monnier+comp.arch@gnu.org> <venpin$241bk$2@dont-email.me> <veu2uv$3cluq$1@dont-email.me> <veudt1$3ep62$1@dont-email.me> <vf3qgi$ijah$1@dont-email.me> <vf4u1t$qo5f$2@dont-email.me> <vf4ve7$rtqt$1@dont-email.me> <86zfmwvs5w.fsf@linuxsc.com> <vf7gk0$1ce7n$1@dont-email.me> <86sesmvqu1.fsf@linuxsc.com> <f76d30e07a848362c2ce912ee8d62479@www.novabbs.org> <vfbhpv$26trl$2@dont-email.me> <58fcd0a722acd8a6e2426596e006d86c@www.novabbs.org> <vfcmj9$2h0pg$1@dont-email.me> <11a33395baec9abee86a556c799f5318@www.novabbs.org> Injection-Date: Mon, 28 Oct 2024 17:30:46 +0100 (CET) Injection-Info: dont-email.me; posting-host="bcf54defc8ccfbe83718558e947df073"; logging-data="1136711"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/eE6tmfq6RgXKxNbsDhCqmtpyFMYBeQ1A=" User-Agent: slrn/1.0.3 (Linux) Cancel-Lock: sha1:hhnguxgGJMATfNKun0YeMY28UCQ= Bytes: 2402 MitchAlsup1 <mitchalsup@aol.com> schrieb: > In posits, a quire is an accumulator with as many binary digits > as to cover max-exponent to min-exponent; so one can accumulate > an essentially unbounded number of sums without loss of precision > --to obtain a sum with a single rounding. Not restricted to posits, I believe (but the term may differ). At university, I had my programming courses on a Pascal compiler which implemented https://en.wikipedia.org/wiki/Karlsruhe_Accurate_Arithmetic , a hardware implementation was on the 4361 as an option https://en.wikipedia.org/wiki/IBM_4300#High-Accuracy_Arithmetic_Facility